
Propositional Satisfiability

&

Constraint Programming

Youssef Hamadi

Microsoft Research,

Cambridge, UK.

Goal of the talk

• Understand the similarities and differences of

two problem solving formalisms

– Propositional SATisfiability

– Constraint Programming

• Know which formalism to use for a particular

problem

• Draft research directions

6/16/2007 2Youssef Hamadi

A first reference

Propositional Satisfiability and Constraint

Programming: a Comparative Survey

L. Bordeaux, Y. Hamadi and L. Zhang

ACM Computing Surveys 2006

By no means the only ref. on SAT:

- forthcoming handbooks,

- survey by David Mitchell...

6/16/2007 3Youssef Hamadi

Outline

• Introduction

• Algorithms for SAT & CP

• Programming SAT & CP

• Lessons learned, integration(?)

• Perspectives & Conclusion

6/16/2007 4Youssef Hamadi

INTRODUCTION

6/16/2007 5Youssef Hamadi

SAT & CP in brief

• SAT & CP, two automated reasoning

technologies:

– NP-hard problem: P

– Language: modelling(P)

– Solver: solve(P)

Very similar...

Very different...

6/16/2007 6Youssef Hamadi

A few things to know about SAT

• SAT means “propositional satisfiability”

– Given a Boolean circuit, find an input for which the

circuit evaluates to true.

0

0

0
AND

NOT

OR

1

0

1

6/16/2007 7Youssef Hamadi

A few things to know about SAT

• An interesting restriction of SAT is

Conjunctive Normal Form (CNF)

• Note that a clause is a no-good:

it forbids a partial assignment

)()()()(tzyx 

A literal A clause

)]1()0()1()0[( tzyx
6/16/2007 8Youssef Hamadi

A few things to know about SAT

• SAT Instances can be put in CNF

x

z

y
AND

NOT

OR















cbac

zbyxa
cbazyx

),(

),(),(
.,,)(

• We obtain a formula that is equi-satisfiable

-Add variables for each intermediate result
a=(x .y), b=(-z) c=(a+b)

-Express the relations between these vars by
clauses

(!a + x), (!a + y) (!x + !y + a)
...

-Constrain output to be true (c)

a

b

c

6/16/2007 9Youssef Hamadi

Modeling in SAT

• Input:

– Language: Conjunctive Normal Form formula,

∑ = (l1˅l2˅...˅lc1) ˄ ... ˄ (l1˅l2˅...˅lck)

– n Boolean variables

• Output:

– Yes [+ [smallest] model]

– No [+ core]

• Remark:

– Several encodings bring different performances

• Size n, k

• # of solutions,

• Symmetries,
6/16/2007 10Youssef Hamadi

Modeling in CP

• Input:

– Variables, range of values : [lb .. ub]

– Constraints available

• Numerical comparisons, e.g. x≤y and basic arithmetic, e.g. 10.x=y,

y+z=u

• Logical/meta constraints, e.g. (AvB)↔C and logical combinations of

constraints

• Symbolic constraints, e.g. T[X] > Y indirection between variables,

etc.

• Global constraints on lists of arguments

– allDiff(x1, …, xn)

– Constraints on cardinality and occurrences

– Etc.

• Output: [best-]solution

6/16/2007 11Youssef Hamadi

Example: graph-coloring

• SAT

6/16/2007 12

Vertex A:
•Booleans: A1, A2, A3,
•“each vertex has one color”:(A1˅A2˅A3)
•“one color at the time”:(¬A1˅¬A2)˄(¬A2˅¬A3)˄(¬A3˅¬A1)
Etc.

Edges: different colors
•(A,B):(¬A1˅¬B1) ˄(¬A2˅¬B2) ˄(¬A3˅¬B3)
•Etc.

... CNF: n=15, k=41

Youssef Hamadi

Example: graph-coloring

• CP

6/16/2007 13

Vertex A:
•Finite Domain: A = {1,2,3}
Etc.

Edges: binary constraints
A ≠ B, B ≠ C, C ≠ D, A ≠ C, A ≠ D, B ≠ D, D ≠ E

5 variables, 3 values, 7 constraints

Alternative model: N-ary + binary constraints: allDiff(A,B,C,D), D ≠ E
Youssef Hamadi

Comparison
SAT

• Low-level

– “Assembly” language for

decision procedures.

CP

• High-level

– Real language with rich set

of constructs and

constraints.

6/16/2007 14Youssef Hamadi

ALGORITHMS FOR SAT & CP

6/16/2007 15Youssef Hamadi

LOCAL SEARCH

6/16/2007 16Youssef Hamadi

Local Search: general principle

6/16/2007 Youssef Hamadi 17

INTENSIFICATION DIVERSIFICATION+

Local Search: general principle

6/16/2007 Youssef Hamadi 18

INTENSIFICATION DIVERSIFICATION+

Local Search: general principle

• Guided Local Search

– Modify the evaluation function to escape minima

• CP [Voudouris 96]

• SAT [Hutter et al. 02]

6/16/2007 19

.

...

Youssef Hamadi

Local Search in SAT & CP

• In SAT

– Flip(x), maximizes the improvement in quality

– Quality = # satisfied clauses

• In CP

– Arithmetic, x != y: reports |x-y|

– Global constraints: reports their insatisfaction

• E.g. AllDifferent, number of pairs of variables with equal

values

– Minimal number of move to reach satisfaction

6/16/2007 20Youssef Hamadi

COMPLETE SEARCH

6/16/2007 21Youssef Hamadi

Complete Search: general principle

6/16/2007 Youssef Hamadi 22

Constraint
propagation

THINK GUESS+

Fix point Speculative
search

Complete Search: general principle

6/16/2007 Youssef Hamadi 23

THINK GUESS+

COMPLETE SEARCH IN SAT

6/16/2007 24Youssef Hamadi

Branching

• MOMS (M), introduced in [Pretolani, 1993], which prefers variables that occur frequently in the

shortest clauses;

• – Jeroslow-Wang (JW), see [Jeroslow and Wang, 1990], where the occurrences of variables in

short clauses are exponentially better than those in long clauses;

• – Bohm (B), discussed in [Buro and Buning, 1992], which considers occurrences in clauses of any

length and, in case of ties, prefers variables occurring frequently in short clauses;

• – SATZ (S), as explained in [Li and Anbulagan, 1997], which features a complex scoring

mechanism based on BCP and a modified version of JW;

• – Unitie0 (U0), introduced by [Copty et al., 2001] under the name “Unit”, which prefers variables

producing the highest simplification with BCP.

6/16/2007 25

Branching

• Select a variable

– VSID heuristic: rank the variables according to their

number of “occurrences” in the clause database.

– Pick up the variable with highest score.

– Regular decay of the scores

– Rem: dynamic ordering since new clauses are learnt

through backtracking…

6/16/2007 26Youssef Hamadi

Propagation

• DPLL makes particular choices of the form x=0,

x=1. In other words, a choice is a literal.

• Propagating literals is a particular form of

resolution called unit resolution:

BA

BxxA





B

Bxx 

resolution unit resolution

6/16/2007 27Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

The problem:

• Determine as fast as possible the clauses that

become unit (i.e. all but one literals false → we

must impose the remaining one)

6/16/2007 28Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

We subscribe to the events related to all 10 literals.

We want to detect the case where one single literal
remains possible.

QUIZZ
How can we react to each event in
constant time?

6/16/2007 29Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

Possible answer: we attach a counter to each clause

10

6/16/2007 30Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

9

Each time we are notified for an event (falsified literal)
we simply decrease the counter

6/16/2007 31Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

6

6/16/2007 32Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

A counter at 1 means that we have a unit clause

(we can find the literal to propagate by iteration or
maintain backtrackable stuff to locate it in constant time)

1

6/16/2007 33Youssef Hamadi

Propagation

• The old-fashioned way is in a sense optimal

(linear time, and even amortized linear time)

• BUT each variable maintains two static lists

(clauses in which appears positively/negatively).

More constraints means slower propagation.

• Solution:

– Use dynamic lists

– Rely on backtrackable data-structures

6/16/2007 34Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

6/16/2007 35Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

6/16/2007 36Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

We just subscribe to 2 literals

6/16/2007 37Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

When a literal becomes false we move the pointer

We stop at first free or satisfied literal and (if free) change
dynamically subscribe to this literal

6/16/2007 38Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

When the two pointers are equal, the clause is unit

(if the 2 pointers meet at literal false then failure)

6/16/2007 39Youssef Hamadi

Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• 2-watch approach

By the way, why did we impose this invariant that
the pointers be specifically at head and tail?

6/16/2007 40Youssef Hamadi

Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

6/16/2007 41Youssef Hamadi

Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

6/16/2007 42Youssef Hamadi

Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

When a watched literal gets violated: we
search for a free literal at a position different
from the other pointer

6/16/2007 43Youssef Hamadi

Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

When the only free position is the other
Pointer, the corresponding literal is unit
(when all positions incorrect, fail)

QUIZZ Can you see the advantage over Head/tail?

6/16/2007 44Youssef Hamadi

Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

Answer: the pointers don’t even need
to be backtrackable

6/16/2007 45Youssef Hamadi

Propagation

• 2-watch approach

Answer: the pointers don’t even need
to be backtrackable

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

6/16/2007 46Youssef Hamadi

Backtracking

• Failure detected during the propagation process

1. Conflict Analysis

2. Backtracking

6/16/2007 47Youssef Hamadi

Conflict Analysis

• First thing is to trace the reasoning: notion of

implication graph

• Note that cheaply computed in SAT context

• Note that each clause used exactly once

6/16/2007 48Youssef Hamadi

Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)2(02 x)3(07 x

6/16/2007 49Youssef Hamadi

Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 

)2(11 x

)3(07 x)2(02 x

65 xx 

6/16/2007 50Youssef Hamadi

Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)7(04 x)7(13 x

)7(15 x

)3(07 x

)7(08 x

)7(16 x

)7(18 x)2(02 x

6/16/2007 51Youssef Hamadi

Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)7(04 x)7(13 x

)7(15 x

)3(07 x

)7(08 x

)7(16 x

)7(18 x)2(02 x

6/16/2007 52Youssef Hamadi

Clause Learning

• Creating no-good -> (ordered) resolution

– “Assertive”, allows the refutation of one past hypothesis.

• Possibility to clean memory by forgetting some of them

– Here again, activity-based: score increased when involved in

propagation

– Clauses with the lowest scores can be forgotten

– Solvers that are “memory-opportunistic”: if some memory is free

let’s use it, otherwise we are still complete.

6/16/2007 53Youssef Hamadi

COMPLETE SEARCH IN CP

6/16/2007 54Youssef Hamadi

6/16/2007 55

Constraint Propagation

+
X

Y

Z

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z

Youssef Hamadi

6/16/2007 56

Constraint Propagation

+

X:[3..5]

Y:[4..8]

Z:[0..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z

Youssef Hamadi

6/16/2007 57

Constraint Propagation

+
X:[3..5]

Y:[4..8]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z

Youssef Hamadi

6/16/2007 58

Constraint Propagation

+
X:[3..5]
X:[3..4]

Y:[4..8]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z

Youssef Hamadi

6/16/2007 59

Constraint Propagation

+
X:[3..5]
X:[3..4]

Y:[4..8]
Y:[4..5]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Fix point

Initial space: 3*5*9

Final space: 2*2*2

Example:

X + Y = Z

Youssef Hamadi

6/16/2007 60

Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Example: X + Y = Z

Youssef Hamadi

6/16/2007 61

Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 3

Example: X + Y = Z

Youssef Hamadi

6/16/2007 62

Constrained Search

X

Y

Z

3 4

4 5

77 7 7

54
+X

Y

Z

Constraint

Store:

Y = 4

Z = 7

88 8 8

Example: X + Y = Z

Youssef Hamadi

6/16/2007 63

Constrained Search

X

Y

Z

3 4

4 5

88 8 8

54
+X

Y

Z

Constraint

Store:

Y = 5

Z = 8

77 7 7

Example: X + Y = Z

Youssef Hamadi

6/16/2007 64

Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 4

Y = 4

Z = 8

Example: X + Y = Z

Youssef Hamadi

6/16/2007 65

Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 3

Cost

*

Goal: min(x*y) Cost = [12 .. 15]

Example: X + Y = Z, Min(X*Y)

Youssef Hamadi

6/16/2007 66

Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Y = 4

Z = 7

Cost = 12

Cost

*

Goal: min(x*y)

Example: X + Y = Z, Min(X*Y)

Youssef Hamadi

6/16/2007 67

Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Cost < 12

Cost

*

Goal: min(x*y)

Fail

Example: X + Y = Z, Min(X*Y)

Youssef Hamadi

PROGRAMMING IN SAT & CP

6/16/2007 68Youssef Hamadi

Programming in SAT

• Tuning of SAT solvers

– Not essential: learning and VSID are usually able to

grasp and solve the problem after a few restarts

6/16/2007 69Youssef Hamadi

Programming in CP

• Search strategy

– Variable ordering

– Value ordering

Use the understanding of the domain to encode an

efficient strategy…

… expertise required…

…time consuming…

6/16/2007 70Youssef Hamadi

Youssef Hamadi 71

(Real) Example: Microsoft

Consulting Services
• Capacity planning problem, (simplified) definition

– 850 IT consultants,

• All over the U.S.

• Different skills, availability, etc.

– Incoming demands

• 200 /month

• Requiring different set of skills, at specific dates etc.

– Allocate {consultants} to each demand while,

• Minimizing travelling cost,

• Respecting annual utilization target per/consultant,

• Providing a fair repartition of travel between consultants,

• Taking into account training (skill refreshing),

• Taking into account consultants/customers preferences,

• Taking into account expected demands…

• Etc.6/16/2007

Youssef Hamadi 72

(Real) Example: Microsoft

Consulting Services

Experiment:

• Batch allocation of 50 demands over 850

possible consulting resources

• Out-of-the-box Disolver: 1.9hours

– Default “fail-first principle” heuristic

6/16/2007

Youssef Hamadi 73

(Real) Example: Microsoft

Consulting Services

• Disolver provided with problem structure: 17.58s

– Problem structure:

• Hvar: demand

• Hval: “closest consultant first”

6/16/2007

LESSONS LEARNED,

INTEGRATION?

6/16/2007 74Youssef Hamadi

The magic of DPLL / zChaff –

• or how to get a combination right

6/16/2007 75Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

The implication graph, obtained
cheaply from the clause data-
structures, captures the reasoning done
by BCP and allows
clause-learning

6/16/2007 76Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

Learnt no-goods are
naturally encoded as
clauses; they will allow
propagation to discard
search spaces already
explored

6/16/2007 77Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

Note that learning extra
clauses is only feasible if
the propagation
mechanism is not slowed-
down too much – thanks, 2-
watch!

6/16/2007 78Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

How to undo a conflict is
determined by the learnt
clause

6/16/2007 79Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

The level at which to
backtrack is directly
deduced from learnt
clause. Plus we can pick an
asserting clause

6/16/2007 80Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

Note that the data-structures used for propagation are backtrack-
friendly: other than undoing some decision we don’t need to re-
compute anything

6/16/2007 81Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

The branching heuristics is based on
observing the activity of the deduction
mechanisms (propagation)

This is done by increasing the weights
of the variables involved in the learnt
clauses

6/16/2007 82Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

Restarts

Now if we add restarts to the picture,
they also fit pretty well:

Learning helps reducing the time lost
when “restarting from scratch” as we
may keep deductions from previous
runs

6/16/2007 83Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

Restarts

Now if we add restarts to the picture,
they also fit pretty well:

Plus when we restart we can benefit
from the scoring

6/16/2007 84Youssef Hamadi

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause
Learning

Branching
Heuristics

A modern DPLL solver is not exactly a loosely
coupled piece of software, is it? 

Restarts

6/16/2007 85Youssef Hamadi

Lessons to learn from the

architecture of SAT solvers

• Implementers of CP solvers like

to think in terms of “open

system”, “decoupling of

components”, “user-

extendibility”

• The interaction between

branching, propagation and

other components is weak

• Couldn’t CP solvers go the SAT

way?

LESSON

Research
Problem

6/16/2007 86Youssef Hamadi

PERSPECTIVES

6/16/2007 87Youssef Hamadi

Problems of SAT & CP

• SAT

– Expressivity.. CNF encoding too low level for some

new domains

• CP

– Required expertise, tuning…

6/16/2007 Youssef Hamadi 88

SAT

• Satisfiability Modulo Theory

– Modern DPLL solver

– Extended with new theories, e.g., linear arithmetic

Compact representation,

DPLL efficiency

6/16/2007 89

Unit
propagation

2-watch

Non-Chrono.
Backtracking

Clause Learning
Branching
Heuristics

Restarts

Youssef Hamadi

The Problem of CP Usability

Youssef Hamadi 91

Usability Problem of Constraint

Programming
• Exploiting the problem structure:

Constraints

Variables

Soft Constraints

Problem modelling

Tuning: quality + speed

6/16/2007

Performance Prediction and

Automated Tuning

Youssef Hamadi 93

Classical approach for tuning

Tuning

1. Find a large set of representative instances I

2. Test various parameter settings in order to find p* the
best setting

3. Use p* on all instances with the real application

Problems:

• Must be able to characterize the problem to correctly
generate I

• Time consuming

6/16/2007

Youssef Hamadi 94

Instance aware Problem Solver

1. Learn a single function that maps instance
features and parameter settings to runtime
– Instance features:

• Quickly computed
– Basic statistics – size, etc.

– Graph-based features – degree, etc.

– Local search probes - #local minima, etc.

– DPLL-based measures – Knuth estimator, etc.

– Etc.

2. Given a new instance
1. Compute its features

2. Search for the parameter setting p* that minimizes
predicted runtime for these features

6/16/2007

Youssef Hamadi 95

Evaluation

• Prediction of two local search for SAT

– Novelty+ (winner SAT 04 competition)

– SAPS

• Problems

– Hard random

– Quasi-group completion problem

– Mixed

6/16/2007

Youssef Hamadi 96

Experimental results

Instance-aware solver,
average speed-ups:

6/16/2007

Youssef Hamadi 97

Experimental results

• Two orders of magnitude better than the default

for Novelty+ on Quasi-groups

• One order of magnitude better than the best-

fixed for Novelty+ on Mixed

• Factor 2 better than the best-fixed for SAPS on

Mixed

• Never very far than optimal settings for the two

algorithms

6/16/2007

CONCLUSION

6/16/2007 98Youssef Hamadi

6/16/2007 99

SAT vs CP
SAT solving

• Modelling

– Conjunctive Normal form

formula.

• Relaxation

– Fast unit clause

propagation.

• Search

– Built-in branch-and-prune.

Constraint Programming

• Modelling

– Arithmetic, logical, symbolic,

global constraints.

• Relaxation

– Constraint propagation.

• Search

– Built-in branch-and-prune /

bound, support for easy

integration of user supplied

heuristics.

Youssef Hamadi

6/16/2007 100

SAT vs. CP

Low-level

Black box

Automatic

High-level

Glass box

Parameterised

Focus on decision

High specialisation

Focus on optimisation

High versatility

Small

Homogeneous

Large

Open

Bottom-up evolution

Progress measurable

Top-down evolution

Poor measurability

M
et

h
o

d
o

lo
gy

A
p

p
lic

at
io

n
s

So
lv

er
D

es
ig

n
Ev

o
lu

ti
o

n

Youssef Hamadi

Conclusion

• Propositional Satisfiability,

 If your problem is easy to “compile” in conjunctive

normal form

+ efficient out-of-the-box-free DPLL solvers

- encoding too complex for large instances

- Constraint Programming

If your problem has many facets, is big and can

accommodate good sub-optimal solutions

+ optimisation

- Heavy tuning nearly always required!
6/16/2007 101Youssef Hamadi

A first reference

Propositional Satisfiability and Constraint

Programming: a Comparative Survey

L. Bordeaux, Y. Hamadi and L. Zhang

ACM Computing Surveys 2006

By no means the only ref. on SAT:

- forthcoming handbooks,

- survey by David Mitchell...

6/16/2007 102Youssef Hamadi

