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Goal of the talk

• Understand the similarities and differences of 

two problem solving formalisms

– Propositional SATisfiability

– Constraint Programming

• Know which formalism to use for a particular 

problem

• Draft research directions
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A first reference

Propositional Satisfiability and Constraint 

Programming: a Comparative Survey

L. Bordeaux, Y. Hamadi and L. Zhang

ACM Computing Surveys 2006

By no means the only ref. on SAT:

- forthcoming handbooks, 

- survey by David Mitchell...
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Outline

• Introduction

• Algorithms for SAT & CP

• Programming SAT & CP

• Lessons learned, integration(?)

• Perspectives & Conclusion
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INTRODUCTION
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SAT & CP in brief

• SAT & CP, two automated reasoning 

technologies:

– NP-hard problem: P

– Language: modelling(P)

– Solver: solve(P)

Very similar... 

Very different...
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A few things to know about SAT

• SAT means “propositional satisfiability”

– Given a Boolean circuit, find an input for which the 

circuit evaluates to true.

0

0

0
AND

NOT

OR

1

0

1
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A few things to know about SAT

• An interesting restriction of SAT is                        

Conjunctive Normal Form (CNF) 

• Note that a clause is a no-good:                          

it forbids a partial assignment

)()()()( tzyx 

A literal A clause

)]1()0()1()0[(  tzyx
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A few things to know about SAT

• SAT Instances can be put in CNF
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• We obtain a formula that is equi-satisfiable

-Add variables for each intermediate result
a=(x .y),    b=(-z)      c=(a+b)

-Express the relations between these vars by 
clauses

(!a + x),  (!a + y)    (!x + !y + a)
...

-Constrain output to be true     (c)

a

b

c
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Modeling in SAT

• Input: 

– Language: Conjunctive Normal Form formula,

∑ = (l1˅l2˅...˅lc1) ˄ ... ˄ (l1˅l2˅...˅lck) 

– n Boolean variables

• Output: 

– Yes [+ [smallest] model]

– No [+ core]

• Remark:

– Several encodings bring different performances 

• Size n, k

• # of solutions, 

• Symmetries, 
6/16/2007 10Youssef Hamadi



Modeling in CP

• Input:

– Variables, range of values : [lb .. ub]

– Constraints available

• Numerical comparisons, e.g. x≤y and basic arithmetic, e.g. 10.x=y, 

y+z=u

• Logical/meta constraints, e.g. (AvB)↔C and logical combinations of 

constraints

• Symbolic constraints, e.g. T[X] > Y indirection between variables, 

etc.

• Global constraints on lists of arguments

– allDiff(x1, …, xn)

– Constraints on cardinality and occurrences

– Etc.

• Output: [best-]solution
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Example: graph-coloring

• SAT

6/16/2007 12

Vertex A: 
•Booleans: A1, A2, A3, 
•“each vertex has one color”:(A1˅A2˅A3)
•“one color at the time”:(¬A1˅¬A2)˄(¬A2˅¬A3)˄(¬A3˅¬A1)
Etc.

Edges: different colors
•(A,B):(¬A1˅¬B1) ˄(¬A2˅¬B2) ˄(¬A3˅¬B3) 
•Etc.

... CNF: n=15, k=41
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Example: graph-coloring

• CP
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Vertex A: 
•Finite Domain: A = {1,2,3}
Etc.

Edges: binary constraints
A ≠ B, B ≠ C, C ≠ D, A ≠ C, A ≠ D, B ≠ D, D ≠ E

5 variables, 3 values, 7 constraints

Alternative model: N-ary + binary constraints: allDiff(A,B,C,D), D ≠ E
Youssef Hamadi



Comparison
SAT

• Low-level

– “Assembly” language for 

decision procedures.

CP

• High-level

– Real language with rich set 

of constructs and 

constraints.
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ALGORITHMS FOR SAT & CP
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LOCAL SEARCH
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Local Search: general principle
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Local Search: general principle
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Local Search:  general principle

• Guided Local Search

– Modify the evaluation function to escape minima

• CP [Voudouris 96]

• SAT [Hutter et al. 02]
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.

...
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Local Search in SAT & CP

• In SAT

– Flip(x), maximizes the improvement in quality

– Quality = # satisfied clauses

• In CP

– Arithmetic, x != y: reports |x-y|

– Global constraints: reports their insatisfaction

• E.g. AllDifferent, number of pairs of variables with equal 

values 

– Minimal number of move to reach satisfaction
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COMPLETE SEARCH
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Complete Search: general principle
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Constraint
propagation

THINK GUESS+

Fix point Speculative 
search



Complete Search: general principle
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COMPLETE SEARCH IN SAT
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Branching

• MOMS (M), introduced in [Pretolani, 1993], which prefers variables that occur frequently in the 

shortest clauses;

• – Jeroslow-Wang (JW), see [Jeroslow and Wang, 1990], where the occurrences of variables in 

short clauses are exponentially better than those in long clauses;

• – Bohm (B), discussed in [Buro and Buning, 1992], which considers occurrences in clauses of any 

length and, in case of ties, prefers variables occurring frequently in short clauses;

• – SATZ (S), as explained in [Li and Anbulagan, 1997], which features a complex scoring 

mechanism based on BCP and a modified version of JW;

• – Unitie0 (U0), introduced by [Copty et al., 2001] under the name “Unit”, which prefers variables 

producing the highest simplification with BCP.
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Branching

• Select a variable

– VSID heuristic: rank the variables according to their 

number of “occurrences” in the clause database. 

– Pick up the variable with highest score.

– Regular decay of the scores

– Rem: dynamic ordering since new clauses are learnt 

through backtracking…
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Propagation

• DPLL makes particular choices of the form x=0, 

x=1. In other words, a choice is a literal.

• Propagating literals is a particular form of 

resolution called unit resolution:

BA

BxxA





B

Bxx 

resolution unit resolution
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

The problem:

• Determine as fast as possible the clauses that 

become unit (i.e. all but one literals false → we 

must impose the remaining one)
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

We subscribe to the events related to all 10 literals.

We want to detect the case where one single literal 
remains possible.

QUIZZ
How can we react to each event in 
constant time?
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

Possible answer: we attach a counter to each clause

10

6/16/2007 30Youssef Hamadi



Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

9

Each time we are notified for an event (falsified literal) 
we simply decrease the counter
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

6
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• The old-fashioned way

A counter at 1 means that we have a unit clause

(we can find the literal to propagate by iteration or 
maintain backtrackable stuff  to locate it in constant time)

1
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Propagation

• The old-fashioned way is in a sense optimal 

(linear time, and even amortized linear time)

• BUT each variable maintains two static lists 

(clauses in which appears positively/negatively).

More constraints means slower propagation. 

• Solution: 

– Use dynamic lists

– Rely on backtrackable data-structures
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

We just subscribe to 2 literals
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

When a literal becomes false we move the pointer

We stop at first free or satisfied literal and (if free) change
dynamically subscribe to this literal
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• Head/Tail approach

When the two pointers are equal,  the clause is unit

(if the 2 pointers meet at literal false then failure)
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Propagation

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

• 2-watch approach

By the way, why did we impose this invariant that
the pointers be specifically at head and tail?
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Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10
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Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10
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Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

When a watched literal gets violated: we 
search for a free literal at a position different
from the other pointer
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Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

When the only free position is the other 
Pointer, the corresponding literal is unit
(when all positions incorrect, fail)

QUIZZ Can you see the advantage over Head/tail?
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Propagation

• 2-watch approach

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10

Answer: the pointers don’t even need 
to be backtrackable
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Propagation

• 2-watch approach

Answer: the pointers don’t even need 
to be backtrackable

!x1 x2 x3 x4 !x5 x6 x7 x8 !x9 x10
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Backtracking

• Failure detected during the propagation process

1. Conflict Analysis

2. Backtracking
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Conflict Analysis

• First thing is to trace the reasoning: notion of 

implication graph

• Note that cheaply computed in SAT context

• Note that each clause used exactly once
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Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)2(02 x )3(07 x
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Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 

)2(11 x

)3(07 x)2(02 x

65 xx 
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Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)7(04 x )7(13 x

)7(15 x

)3(07 x

)7(08 x

)7(16 x

)7(18 x)2(02 x
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Implication Graphs

21 xx  431 xxx  532 xxx 

876 xxx  86 xx 65 xx 

)2(11 x

)7(04 x )7(13 x

)7(15 x

)3(07 x

)7(08 x

)7(16 x

)7(18 x)2(02 x
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Clause Learning

• Creating no-good ->  (ordered) resolution

– “Assertive”, allows the refutation of one past hypothesis. 

• Possibility to clean memory by forgetting some of them

– Here again, activity-based: score increased when involved in 

propagation

– Clauses with the lowest scores can be forgotten

– Solvers that are “memory-opportunistic”: if some memory is free 

let’s use it, otherwise we are still complete.
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COMPLETE SEARCH IN CP
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Constraint Propagation

+
X

Y

Z

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub) 
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z
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Constraint Propagation

+

X:[3..5]

Y:[4..8]

Z:[0..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub) 
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z
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Constraint Propagation

+
X:[3..5]

Y:[4..8]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub) 
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z
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Constraint Propagation

+
X:[3..5]
X:[3..4]

Y:[4..8]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub)
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Example:

X + Y = Z
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Constraint Propagation

+
X:[3..5]
X:[3..4]

Y:[4..8]
Y:[4..5]

Z:[0..8]
Z:[7..8]

X=[lb .. ub]
Y=[lb .. ub]
Z=[lb .. ub]

Z <= (X.ub + Y.ub)
Z >= (X.lb + Y.lb)
X <= (Z.ub - Y.lb)
X >= (Z.lb - Y.ub) 
Y >= (Z.lb - X.ub)
Y <= (Z.ub - X.lb)

Fix point

Initial space: 3*5*9

Final space: 2*2*2

Example:

X + Y = Z
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Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Example: X + Y = Z
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Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 3

Example: X + Y = Z
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Constrained Search

X

Y

Z

3 4

4 5

77 7 7

54
+X

Y

Z

Constraint

Store:

Y = 4

Z = 7

88 8 8

Example: X + Y = Z
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Constrained Search

X

Y

Z

3 4

4 5

88 8 8

54
+X

Y

Z

Constraint

Store:

Y = 5

Z = 8

77 7 7

Example: X + Y = Z
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Constrained Search

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 4

Y = 4

Z = 8

Example: X + Y = Z
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Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

X = 3

Cost

*

Goal: min(x*y) Cost = [12 .. 15]

Example: X + Y = Z, Min(X*Y) 
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Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Y = 4

Z = 7

Cost = 12

Cost

*

Goal: min(x*y)

Example: X + Y = Z, Min(X*Y) 
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Constrained Optimization

X

Y

Z

3 4

4 5

7 887 87 87

54
+X

Y

Z

Constraint

Store:

Cost < 12

Cost

*

Goal: min(x*y)

Fail

Example: X + Y = Z, Min(X*Y) 
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PROGRAMMING IN SAT & CP
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Programming in SAT

• Tuning of SAT solvers

– Not essential: learning and VSID are usually able to 

grasp and solve the problem after a few restarts
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Programming in CP

• Search strategy

– Variable ordering

– Value ordering

Use the understanding of the domain to encode an 

efficient strategy…

… expertise required…

…time consuming…
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(Real) Example: Microsoft 

Consulting Services
• Capacity planning problem, (simplified) definition

– 850 IT consultants, 

• All over the U.S. 

• Different skills, availability, etc.

– Incoming demands 

• 200 /month

• Requiring different set of skills, at specific dates etc.

– Allocate {consultants} to each demand while,

• Minimizing travelling cost,

• Respecting annual utilization target per/consultant,

• Providing a fair repartition of travel between consultants,

• Taking into account training (skill refreshing),

• Taking into account consultants/customers preferences,

• Taking into account expected demands…

• Etc.6/16/2007
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(Real) Example: Microsoft 

Consulting Services

Experiment:

• Batch allocation of 50 demands over 850 

possible consulting resources

• Out-of-the-box Disolver: 1.9hours

– Default “fail-first principle” heuristic
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(Real) Example: Microsoft 

Consulting Services

• Disolver provided with problem structure: 17.58s

– Problem structure:

• Hvar: demand

• Hval: “closest consultant first”
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LESSONS LEARNED, 

INTEGRATION?

6/16/2007 74Youssef Hamadi



The magic of DPLL / zChaff –

• or how to get a combination right
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

The implication graph, obtained 
cheaply from the clause data-
structures, captures the reasoning done 
by BCP and allows
clause-learning
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

Learnt no-goods are 
naturally encoded as 
clauses; they will allow 
propagation to discard 
search spaces already 
explored
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

Note that learning extra 
clauses is only feasible if 
the propagation 
mechanism is not slowed-
down too much – thanks, 2-
watch!
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

How to undo a conflict is 
determined by the learnt 
clause
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

The level at which to 
backtrack is directly 
deduced from learnt 
clause. Plus we can pick an 
asserting clause
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

Note that the data-structures used for propagation are backtrack-
friendly: other than undoing some decision we don’t need to re-
compute anything
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

The branching heuristics is based on 
observing the activity of the deduction 
mechanisms (propagation)

This is done by increasing the weights 
of the variables involved in the learnt 
clauses
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

Restarts

Now if we add restarts to the picture, 
they also fit pretty well:

Learning helps reducing the time lost 
when “restarting from scratch” as we 
may keep deductions from previous
runs
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

Restarts

Now if we add restarts to the picture, 
they also fit pretty well:

Plus when we restart we can benefit 
from the scoring 
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause 
Learning

Branching 
Heuristics

A modern DPLL solver is not exactly a loosely 
coupled piece of software, is it?  

Restarts
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Lessons to learn from the 

architecture of SAT solvers

• Implementers of CP solvers like 

to think in terms of “open 

system”, “decoupling of 

components”, “user-

extendibility”

• The interaction between 

branching, propagation and 

other components is weak 

• Couldn’t CP solvers go the SAT 

way?

LESSON

Research
Problem
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PERSPECTIVES
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Problems of SAT & CP

• SAT

– Expressivity.. CNF encoding too low level for some 

new domains

• CP

– Required expertise, tuning…
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SAT

• Satisfiability Modulo Theory

– Modern DPLL solver

– Extended with new theories, e.g., linear arithmetic

Compact representation, 

DPLL efficiency 
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Unit 
propagation

2-watch

Non-Chrono. 
Backtracking

Clause Learning
Branching 
Heuristics

Restarts
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The Problem of CP Usability
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Usability Problem of Constraint 

Programming
• Exploiting the problem structure:

Constraints

Variables

Soft Constraints

Problem modelling

Tuning: quality + speed
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Performance Prediction and 

Automated Tuning
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Classical approach for tuning

Tuning

1. Find a large set of representative instances I

2. Test various parameter settings in order to find p* the 
best setting

3. Use p* on all instances with the real application

Problems:

• Must be able to characterize the problem to correctly 
generate I

• Time consuming
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Instance aware Problem Solver

1. Learn a single function that maps instance 
features and parameter settings to runtime
– Instance features:

• Quickly computed
– Basic statistics – size, etc.

– Graph-based features – degree, etc.

– Local search probes - #local minima, etc.

– DPLL-based measures – Knuth estimator, etc.

– Etc.

2. Given a new instance
1. Compute its features

2. Search for the parameter setting p* that minimizes 
predicted runtime for these features
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Evaluation

• Prediction of two local search for SAT

– Novelty+ (winner SAT 04 competition)

– SAPS

• Problems

– Hard random

– Quasi-group completion problem

– Mixed
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Experimental results

Instance-aware solver,
average speed-ups:
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Experimental results

• Two orders of magnitude better than the default 

for Novelty+ on Quasi-groups

• One order of magnitude better than the best-

fixed for Novelty+ on Mixed

• Factor 2 better than the best-fixed for SAPS on 

Mixed

• Never very far than optimal settings for the two 

algorithms
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CONCLUSION
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SAT vs CP
SAT solving

• Modelling

– Conjunctive Normal form 

formula.

• Relaxation

– Fast unit clause 

propagation.

• Search

– Built-in branch-and-prune.

Constraint Programming

• Modelling

– Arithmetic, logical, symbolic, 

global constraints.

• Relaxation

– Constraint propagation.

• Search

– Built-in branch-and-prune / 

bound, support for easy 

integration of user supplied 

heuristics.
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SAT vs. CP

Low-level

Black box

Automatic

High-level

Glass box

Parameterised

Focus on decision

High specialisation

Focus on optimisation

High versatility

Small

Homogeneous

Large

Open

Bottom-up evolution

Progress measurable

Top-down evolution

Poor measurability
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Conclusion

• Propositional Satisfiability, 

 If your problem is easy to “compile” in conjunctive 

normal form

+ efficient out-of-the-box-free DPLL solvers

- encoding too complex for large instances

- Constraint Programming

If your problem has many facets, is big and can 

accommodate good sub-optimal solutions

+ optimisation

- Heavy tuning nearly always required!
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A first reference

Propositional Satisfiability and Constraint 

Programming: a Comparative Survey

L. Bordeaux, Y. Hamadi and L. Zhang

ACM Computing Surveys 2006

By no means the only ref. on SAT:

- forthcoming handbooks, 

- survey by David Mitchell...
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