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Interval Analysis

Global .
Optimization Let X =[x}, xY] and Y = [y}, yY] 2 intervals.
Methods based . 5 . .

# Moore (1966) defines the interval arithmetic as follows:

on Interval
analysis

Frédéric Messine ( [XL7XU] + [yL’yU] — [XL + yL,XU + yU]
Interval Analysis [XL, XU] - [yL,yU] = [XL - yU,XU - _yL]
[x5, xY] > [yt yUT = [min{xyt, xty Y xYyt, xUy Y},

maX{XLyL,XLyU,XUyL,XUyU}]

et xV] = [yt yY] = [k, xV] x [ylu, S0ty
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Let X =[x}, xY] and Y = [y}, yY] 2 intervals.
Moore (1966) defines the interval arithmetic as follows:

(DX x4 vty Y] = Iyt XY+ Y]

[XL7XU] - [yLayU] = [XL _yU7XU _yL]

[XL7XU] % [yL’yU] — [min{xLyL,XLyU,XUyL,XUyU},
maX{XLyL,XLyU,XUyL,XUyU}]

et xV] = [yt yY] = [k, xV] x [ylu, S0ty

Remark
Subtraction and division are not the inverse operations of

addition and respectively multiplication.
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[x5, xY] > [yt yUT = [min{xyt, xty Y xYyt, xUy Y},

maX{XLyL,XLyU,XUyL,XUyU}]

et xV] = [yt yY] = [k, xV] x [ylu, ylL] if0 ¢ [yt yY.

Remark
Subtraction and division are not the inverse operations of

addition and respectively multiplication.

Difficulties:

+0 = extended interval arithmetic, (E. Hansen).
Numerical errors = rounded interval analysis, (Moore).
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Forall x e X andy € Y, one has: xxy € X x Y, where x is
+,—, X, +.

Property
Let A, B, C 3 intervals, therefore
Ax(B+C)CAxB+AxC.
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Forall x e X andy € Y, one has: xxy € X x Y, where x is
+,—, X, +.

Property

Let A, B, C 3 intervals, therefore
Ax(B+C)CAxB+AxC.
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Y1 x Yy C Zy x Zo where x is +, —, X, +.



Some Properties of Interval Analysis and Inclusion

Function
Global
R roperty .
on Interal Forall x e X andy € Y, one has: xxy € X x Y, where x is
+,—, X, +.
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Interval Analysis Property

Let A, B, C 3 intervals, therefore
Ax(B+C)CAxB+AxC.

Property
Let Y1,Y5,21, 2> 4 intervals, if Y1 C Z1 and if Yo C Zo then
Y1 x Yy C Zy x Zo where x is +, —, X, +.

Definition
An inclusion function F(X) of f over a box X is such that

f(X):= [)r(nei)rg f(x), max f(x)] € F(X) = [FH(X), FY(X)]

NS



Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine

Interval Analysis

Natural Extension: an Inclusion Function

Theorem
The natural extension into interval of an expression of f over
a box X is an inclusion function.
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Example
Let f(x) =x*>—x+1and x € X =0,1]
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Interval Analysis

Natural Extension: an Inclusion Function

Theorem

The natural extension into interval of an expression of f over
a box X is an inclusion function.

Example
Let f(x) =x*>—x+1and x € X =0,1]
Inclusion functions:
> Fl(X) :X2 - X+1= [071]2 - [071]+ [171] = [072]a
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Example
Let f(x) =x?> —x+1and x € X = [0,1]
Inclusion functions:
» A(X)=X?-X+1=[0,1]2-[0,1] +[1,1] = [0,2],

> Fo(X) = X(X —1)+1=[0,1)([0,1] = 1) + [1,1] =
[0,1] x [~1,0] + [1,1] = [0, 1],
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a box X is an inclusion function.
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Interval Analysis
Example
Let f(x) =x?> —x+1and x € X = [0,1]
Inclusion functions:
» A(X)=X?-X+1=[0,1]2-[0,1] +[1,1] = [0,2],

> Fo(X) = X(X —1)+1=[0,1)([0,1] = 1) + [1,1] =
[0,1] x [~1,0] + [1,1] = [0, 1],

1\? 3 1112 3 [3
Fs(X)= (X - = A 2= 2.1,
> r=(x-3) +3=-23) +1=[3]
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Rounded Interval Analysis

Let X =[a,b] and Y = [c, d] 2 intervals.
Moore defines also the rounded interval arithmetic as follows:

' [a, b] + [c,d] = [a +c, m]

[a,b] —[c,d] =[a—d, m]
[a, b] x [c, d] = [min{ac, ad, bc, bd},
max{ac, ad, bc, W}]

| 12,61+ [e, ] = [a,6] x [%,%} if 0 ¢ [c, d].
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Interval Analysis

Rounded Interval Analysis

Let X =[a,b] and Y = [c, d] 2 intervals.
Moore defines also the rounded interval arithmetic as follows:

' [a, b] + [c,d] = [a +c, m]

[a,b] —[c,d] =[a—d, m]

[a, b] x [c, d] = [min{ac, ad, bc, bd},
max{ac, ad, bc, W}]

| 12,61+ [e, ] = [a,6] x [%,%} if 0 ¢ [c, d].

Where a, resp. a, represents the nearest under, resp. over,
floating point representation of the real x



Extended Interval Analysis

el Let X =[a,b] and Y = [c, d] 2 intervals.
Methods based E. Hansen defines the extended interval arithmetic for the
analysis division X/Y with 0 € Y/, as follows:
Frédéric Messine ( [b/C, —|—OO]’ If b S 0 and d — O,
Interval Analysis [—oo,b/d]U[b/c,+x], if b<0and c <0< d,

[0, b/d], if b<0and c =0,

[—00,4+0], if a <0< b,

[0, a/c], ifa>0and d =0,
[-o00,a/c]U[a/d, 4], ifa>0and c <0< d,
[a, b] £ [—00, +00] = [—00, +0]

\ [a/d,+o0], if a>0and c =0,

X/Y =
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Extended Interval Analysis

Let X =[a,b] and Y = [c, d] 2 intervals.
E. Hansen defines the extended interval arithmetic for the
division X/Y with 0 € Y, as follows:

([b/c, 4], if b<0and d =0,
[—o0, b/d]U[b/c,+ox], if b<0and c <0<d,
[0, b/d], if b<0and c =0,
[—00,4+0], if a <0< b,
[0, a/c], ifa>0and d =0,
[-o00,a/c]U[a/d, 4], ifa>0and c <0< d,
[a, b] £ [—00, +00] = [—00, +0]
[a/d,+o0], if a>0and c =0,

For the addition and the substraction:

[a, b] + [—00,d] = [—00, b+ d]

[a, b] + [c, +00] = [a+ ¢, +0]

[a, b] £ [—00, +00] = [—00, +0]

[a, b] — [-00,d] = [a—d, +]

[a, b] — [c, +00] = [—00, b — ]

X/Y =
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nalysls Baumann, LBVF and Trans. Methods: Univariate Case
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T1, Baumann, AS Form: Multivariate Case
Affine and Quadratic Forms

Computation of
Bounds
Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF
Affine Forms



Inclusion Functions based on Taylor's Expansions:
Univariate Case

opﬁzzlﬂon Let f be a univariate differentiable function, and x, y and &, 3
Methods based variables of X an interval of R.

on Interval

analysis
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(x=¥)" c(m)
n!

Fx) = F )+ )P )+ C 4

(€)

Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF
Affine Forms



Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine

Baumann, LBVF
and Translation

Inclusion Functions based on Taylor's Expansions:
Univariate Case

Let f be a univariate differentiable function, and x, y and &, 3
variables of X an interval of R.

) = F ) P+ E S ) B o

Let denote F(")(X) an enclosure of £("(£) over X (computed
with an interval automatic differentiation tool).

Hence,

() € Fen) P )+ E L Py + B py
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Inclusion Functions based on Taylor's Expansions:
Univariate Case

Let f be a univariate differentiable function, and x, y and &, 3
variables of X an interval of R.

) = F ) P+ E S ) B o

Let denote F(")(X) an enclosure of £("(£) over X (computed
with an interval automatic differentiation tool).

Hence,

n

() € )+ S Py B o )

2 inclusion functions:
> Ti(y, X) = f(y) + (X — y)F'(X)

N2
> Taly. X) = ) + (X = )F() + K P
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and Translation
Methods

Ty, Baumann, ASF

Affine Forms

Baumann Centered Forms: Univariate Case

Optimal Baumann center cg for the best lower bound for Ti:

zp = T{(cg X) = Té’;{( TE(y, X)

(Fly) + (X = y)F'(x)"
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and Translation
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Ty, Baumann, ASF
Affine Forms

Baumann Centered Forms: Univariate Case

Optimal Baumann center cg for the best lower bound for Ti:

25 = Ti(ce, X) = max TE(y, X) = (F(y) + (X = y)F (X))

Optimal Baumann center ¢g for the best upper bound for Ti:

2 i= T(€8, X) = min T (v, X) = (F(y) + (X~ p)F'(x)"
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Baumann, LBVF
and Translation
Methods

T1, Baumann, ASF
Affine Forms

Baumann Centered Forms: Univariate Case

Optimal Baumann center cg for the best lower bound for Ti:

25 = Ti(ce, X) = max TE(y, X) = (F(y) + (X = y)F (X))

Optimal Baumann center ¢g for the best upper bound for Ti:

2 i= T(€8, X) = min T (v, X) = (F(y) + (X~ p)F'(x)"

Baumann in 1988 gives analytical solution for cg (and cg).

o *HENY00 = xV(F)LX)
T T FEI0 - (F)X)

if 0 ¢ F'(X), else monotony case.
Easy to generalize to multivariate differentiable functions.
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Ty, Baumann, ASF

Affine Forms

Example of Baumann Lower Bounds: Univariate
Case
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Ty, Baumann, ASF
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Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Start with f(x) € f(y) + (x — y)F'(X),V¥(x,y) € X?
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and Translation
Methods

Ty, Baumann, ASF
Affine Forms

Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Start with f(x) € f(y) + (x — y)F'(X),V(x,y) € X?
Case when 0 € F/(X) (else it is obvious):



Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Global
Optimization
Methods based

on Interval Start Wlth f(X) € f(y) + (X - .y)F/(X)7v(X7y) € X2
anabvsis Case when 0 € F'(X) (else it is obvious):

Frédéric Messine

2 affine underestimations:
> f(x) > f(xb) + (x = xH)(FHEH(X),vx € X,
Baumann, LBVF > f(X) > f(XU) + (X - XU)(F/)U(X),VX e X,

and Translation
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Baumann, LBVF
and Translation
Methods

T1, Baumann, ASF
Affine Forms

Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Start with f(x) € f(y) + (x — y)F'(X),V¥(x,y) € X?
Case when 0 € F/(X) (else it is obvious):
2 affine underestimations:
> f(x) > f(xh) 4+ (x — xE)(F)E(X),¥x € X,
> f(x) > F(xY) + (x — xY)(F)Y(X),¥x € X,
Therefore, the intersection is a minorant of f over X:
(F)Y(X)F(x") — (F')L(X)f(XU)+(XU —xH(FO)HX)(F)Y(X)
(F)Y(X) = (F")H(X) (F)Y(X) = (F)H(X)

Zlbvf =

Same think for constructing a majorant.
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Baumann, LBVF
and Translation

Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Start with f(x) € f(y) + (x — y)F'(X),V¥(x,y) € X?
Case when 0 € F/(X) (else it is obvious):
2 affine underestimations:
> f(x) > f(xh) 4+ (x — xE)(F)E(X),¥x € X,
> f(x) > F(xY) + (x — xY)(F)Y(X),¥x € X,
Therefore, the intersection is a minorant of f over X:
(F)Y(X)F(x") — (F')L(X)f(XU)+(XU —xH(FO)HX)(F)Y(X)
(F)Y(X) = (F")H(X) (F)Y(X) = (F)H(X)

Zlbvf =

Same think for constructing a majorant.
Problem for a generalization to the multivariate differentiable
case.
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Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF

Affine Forms

Example of Neumaier and Hansen et al. Lower
Bounds: Univariate Case
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Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF

Affine Forms

Example of Kite Algorithm
Csendes et al.

of Lagouanelle,




Comparison between Baumann and Linear
Boundary Value Forms: Univariate Case

o lobal Notations: X = [a, b] and F'(X) = [L, U], with L <0 < U.
Methods based
on Interval Baumann Form:

e alU — bL (b—a)LU
Frédéric Messine =

o= g e =flea) t T

Linear Boundary Value Form:

v L (b— a)LU
Zlpvf — mf(a) +

Baumann, LBVF
and Translation




Comparison between Baumann and Linear
Boundary Value Forms: Univariate Case

opoebal. Notations: X = [a, b] and F'(X) = [L, U], with L <0 < U.
Methods based

on Interval Baumann Form:

analysis

U-bL b—a)LU
Frédéric Messine EB = aU — L and ZB = f(gB) + (ljj)L
Linear Boundary Value Form:

U L (b—a)LU

T, Baumann, ASF = ———f f(b
Affine Forms Zlbvt U-L (2) + U—-1L (b) + U-L

Comparison between:

—L
= Lf(a) + U—1L Lf(b)
BF produces the best lower bound,

LBVF produces the best lower bound,
equality occurs.

f(cg) <>7?

AV
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Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF

Affine Forms

Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

f(x) =x*>—x,x € X =[0,2],
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Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF
Affine Forms

Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

f(x) =x*>—x,x € X=[0,2], and min f(x) = —
x€[0,2]

1

4
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Baumann, LBVF
and Translation

Example of the use of Ty, Tg and LBVF

Methods: Univariate Case

f(x)=x*>—x,x € X=[0,2], and min f(x) = —-

One has:

and

x€[0,2]

F(X) =[0,2]* - [0,2] = [-2,4]

G(X)=2X —1=[-1,3]

1
4



Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

Global
Optimization
Methods based

on Interva 2 _ = 1 — _1
n nienl f(x)=x"—x,xe€ X=]0,2], and Xrerf(l)r712] f(x) = i
Frédéric Messine
One has:
F(X) =[0,2]* - [0,2] = [-2,4]
Bamam tove  and
G(X)=2X—-1=[-1,3]

T1(X)=1f(1)+([0,2] = 1) x [-1,3] = [-3,3]



Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

Global
Optimization
Methods based

on Interva 2 _ = 1 — _1
n nienl f(x)=x"—x,xe€ X=]0,2], and Xrerf(l)r712] f(x) = i
Frédéric Messine
One has:
F(X) =[0,2]* - [0,2] = [-2,4]
Bamam tove  and
G(X)=2X—-1=[-1,3]

T1(X)=1f(1)+([0,2] = 1) x [-1,3] = [-3,3]

Comparison:
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Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

f(x)=x*>—x,x € X=[0,2], and min f(x) = —-

One has:

x€[0,2]

F(X) =[0,2]* - [0,2] = [-2,4]

and

Ti(X) =

G(X)=2X —1=[-1,3]

f(1)+([0,2] = 1) x [-1,3] =[-3,3]

1
4
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Example of the use of Ty, Tg and LBVF
Methods: Univariate Case

f(x) =x*>—x,x € X=[0,2], and min f(x) = —
x€[0,2]
One has:
F(X) = [072]2 - [072] = [7274]
and

G(X)=2X —1=[-1,3]
To(X) = F(1) +([0,2] — 1) x [~1,3] = [3,3]

1,1 7

®=5 183X =

Therefore LBVF give the best lower bound:

Zipyr = —1

1

N
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Example of the use of T; at mid(X): Univariate

Case

f(X) = X2 — X, X € X == [072]7 T]_L(X) = 73

mid(x]

Y

Z
T

05

25



Example of the use of T; at the Baumann center
cg: Univariate Case

Global
Optimization

Methods based f(X) = X2 — X’X (- X = [0’ 2]7 TB(X) = —175

on Interval
analysis

Frédéric Messine

Y

4
3 L

Baumann, LBVF

and Translation 2F

Methods

T, Baumann, AS

Affine Forms 1t
D F
A
2
-3
05

2.5



Example of the use of LBVF: Univariate Case

Global
Optimization

Methods based f(X) = X2 — X, X S X = [0,2]7 LBVF(X) =-1

on Interval
analysis

Frédéric Messine

i A
3 L
Baumann, LBVF
and Translation 2F
Methods
T, Baumann, AS
Affine Forms 1t
ot -
il
2R e e
[la 1}
2
23 1 L L L 1
05 0 05 1 15

2.5



Example of the use of the Kite Algorithm

Global

Optimization

Mitnhzl:v:tserbvaasled f(X) = X2 — X, X & X = [07 2], KITE(X) > -1
analysis

Frédéric Messine

4
A
3 F
Baumann, LBVF
and Translation
Methods 2F

T1, Baumann, ASF
Affine Forms
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Translation based Method for polynomial
functions: Univariate Case

Idea: Compute bounds of f over X by translating the box X.

X — X + p implies modifications of f



Translation based Method for polynomial
functions: Univariate Case

oopal Idea: Compute bounds of f over X by translating the box X.
ptimization
Methods based

on Interval

analysis

X — X + p implies modifications of f

Frédéric Messine

n

n
p(x) = D aw =" a((x+p) — py
S k=0 Jj=0
Methods

T1, Baumann, ASF
Affine Forms



Translation based Method for polynomial
functions: Univariate Case

Gt Idea: Compute bounds of f over X by translating the box X.

Optimization
Methods based
on Interval

lysi 5 . ors 5
e X — X + p implies modifications of f

Frédéric Messine

n n
p(x) = Z axk = Z aj((x+ p) — py
S prd =
Meth?ds .
R .
= ZX+M Zak—H( ) >( 1)k
o
- i) (x + wy,
Jj=0

n—j
k +
with f;(u Zak+1< J)( )k



Example for Translation based Method:
Univariate Case
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Example for Translation based Method:
Univariate Case

Example
Let p(x) = 7x* — 5x3 + 4x% +3x + 2 and x € X = [0, 10]



Example for Translation based Method:
Univariate Case

Global
Optimization
Methods based
on Interval

analysis

Example
Let p(x) = 7x* — 5x3 + 4x% +3x + 2 and x € X = [0, 10]

Frédéric Messine

Lower bounds: (global optimum about 3).

L L > NEH(X) = —4.9 10%,
» HL(X) = —4.57 103,
> TL(X) —1.37 10°,
» TE(X)=—-1.4210%
> TH(X) = —1.56 10%,
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Example for Translation based Method:

Univariate Case

Example

Let p(x) = 7x* = 5x3 +4x2 +3x+2and x € X =

Lower bounds: (global optimum about 3).
» NEL(X) = —4.9 103,

» HL(X) = —4.57 103,
> TlL(X) —1.37 10°,
> Th(X) = —1.42 10%,
» TH(X) = —1.56 10%
> Trans'(X) = 1.92 with u = —0.87.

[0,10]



Inclusion Functions based on Taylor's Expansions:
Multivariate Case

Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine Let f be a multivariate differentiable function, and x and y, 2
variables of X an interval of R".

2 inclusion functions:
[B‘J”TJ\LF” » Ti(y, X) =f(y) + (X —y).G(X)
Ty e ASE =fy) + 21X — ¥)-Gi(X)
1
> Ta(y, X) = F)+HX=9)f'(y)+5(X =) T H(X).(X~y)

G(X) represents the enclosure of the gradient and H(X) the
enclosure of the Hessian matrix over X.
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Notations and Assumptions

Notations:
> X = (X1,...,X,), where X; CR,
> Xi = [ai, bi],
. g:i(x) € [Li, Ui,
» f is define from X to R.
Assumptions:

» L; <0 < U; (else monotonicity case),

» f is one time differentiable over X.
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Baumann Centered Form in the Multivariate Case

Easy to generalize to all the variables are separated:
Optimal Baumann center cg for the best lower bound for Ti:

zg = T{(cg, X) = max T{(y, X) = (f(y) + (X — y).G(X))"

yeX



Baumann Centered Form in the Multivariate Case

Global
Optimization

Mz et Easy to generalize to all the variables are separated:
on Interval

analysis Optimal Baumann center cg for the best lower bound for Ti:

Frédéric Messine

zp = T{(cg, X) = UERS TE(y, X) = (f(y) + (X = ).G(X))"

Baumann, LBVF
and Translation
Methods

e amase  Baumann (1988) gives analytical solution for cg (and ©g).

Affine Forms
aj U,' — b,'L,'

(ca)i = Ui — L

Vie{l, ..., n}.




Baumann Centered Form in the Multivariate Case

Global
Optimization

Mz et Easy to generalize to all the variables are separated:
on Interval

analysis Optimal Baumann center cg for the best lower bound for Ti:

Frédéric Messine

zp = T{(cg, X) = UERS TE(y, X) = (f(y) + (X = ).G(X))"

Baumann, LBVF
and Translation

e omase  Baumann (1988) gives analytical solution for ¢ (and cp).

Affine Forms
aj U,' — b,'L,'

(ca)i = Ui — L

Vie{l, ..., n}.

Hence,

" (b — a;)L;: U;
z="f(cB)+ Y ——
= Ui-h
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Extension of LBVF to the Multivariate Case:
Admissible Simplex Method

n variables = 2" affine underestimations.
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Extension of LBVF to the Multivariate Case:
Admissible Simplex Method

n variables = 2" affine underestimations.
Choice of n+ 1 of them (among 2").
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Extension of LBVF to the Multivariate Case:
Admissible Simplex Method

n variables = 2" affine underestimations.

Choice of n+ 1 of them (among 2").

Idea: Construction of an Admissible Path from S to S
(opposite vertex of S).

» Admissible Simplex:

Figure: Example of an admissible simplex with 3 variables
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Admissible Simplex Form

Sk denotes a vertex of the hypercube X.
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Admissible Simplex Form

Sk denotes a vertex of the hypercube X.

F(x) > F(Sk)+ D> (xi—a)Li+ > (% — by) U, forallx € X,
icl jcdy

where fy € N ={1,2,....n}, Jy = N — Iy and j € Iy iff
(Sk)j = aj (else j € Jy).



Admissible Simplex Form

Global
Optimization
Methods based
on Interval

analysis Sy denotes a vertex of the hypercube X.

Frédéric Messine

F(x) > F(Sk)+ D> (xi—a)Li+ > (% — by) U, forallx € X,

Baumann, LBVF i€l J€Jk
and Translation
Methods

Ty, Baumann, ASF

o e where [ € N ={1,2,...,n}, Jy = N — I, and j € I iff
(Sk)j = aj (else j € Jy).

Construction of an Admissible Simplex:
Find an admissible set: of vertices Sy, S1,...,Sn,
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Admissible Simplex Form

Sk denotes a vertex of the hypercube X.

F(x) > F(Sk)+ D> (xi—a)Li+ > (% — by) U, forallx € X,
icl jcdy

where [ € N ={1,2,...,n}, Jy = N — I, and j € I iff
(Sk)j = aj (else j € Jy).

Construction of an Admissible Simplex:

Find an admissible set: of vertices Sg, 51, ...,S,, means that
the intersection of their corresponding hyperplane 1, =>
lower bound of f over X.



So is the initial vertex of X,
From Sy to Sky1 => only one change of one component:
H/:‘ K/‘/(U/*L/),/:]_ ..... n, where K/ K/:L/ if
I €lpand Kj = U, if I € Jp.
Assume that H, > H;,, > ... > H,,; From Sy change
to get Sp, then change h in 5; to get S, and so on until
one gets S,: the opposite vertex of Sp on the box X.



Admissible Simplex Form

el So is the initial vertex of X,
Optimization
Dl From Si to Six11 => only one change of one component:
on Interva
analysis

Frédéric Messine

Baumann, LBVF
and Translation
Methods

Ty, Baumann, ASF
Affine Forms
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Admissible Simplex Form

So is the initial vertex of X,
From Si to Six11 => only one change of one component:
> H/ :| K/ | /(U/— L/), = 1,...,n, where K/ K/: L/ if
l€lyand K, = U, if I € J.
» Assume that H, > H;,, > ... > H,,; From Sy change
to get S1, then change h in 51 to get S, and so on until
one gets S,: the opposite vertex of Sg on the box X.



Admissible Simplex Form

Global So is the initial vertex of X,

Optimization
Methods based From Si to Six11 => only one change of one component:

on Interval

analysis » H =| K/ | /(U/ - L/), I=1,...,n where K, K, =L, if
Fréderic Messine l€lyand K = U, if | € Jy.
» Assume that H, > H;,, > ... > H,,; From Sy change
to get S1, then change h in 51 to get S, and so on until
Bamzpim) LB one gets S,: the opposite vertex of Sg on the box X.

and Translation
Methods

T, Baumann, ASF - This set of vertices is admissible iff

o=H, <l,a1=H,—H,>0,...,004, , =H;,_ ,—H;, >0, -
Lower bound of ASF:
_ : " (b — a;)L;U;
o =D (S + D o
k=0 1 ! !

i=

(Computations = solve a diagonal linear system. )
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Baumann Form versus Admissible Simplex
Method: Multivariate Case

Proposition
The Baumann center is inside each admissible simplex.
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Baumann Form versus Admissible Simplex
Method: Multivariate Case

Proposition
The Baumann center is inside each admissible simplex.
Proposition

Comparison:

f(gB) <>7 i a,-f(S,-)
i=0

BF produces the best lower bound,
ASF produces the best lower bound,

= equality occurs.
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Baumann Form versus Admissible Simplex
Method: Multivariate Case

Proposition
The Baumann center is inside each admissible simplex.
Proposition

Comparison:

f(gB) <>7 i a,-f(S,-)
i=0

> BF produces the best lower bound,
< ASF produces the best lower bound,

= equality occurs.

Property

For computing lower bounds:
» f convex = ASF.
» f concave = BF.
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Affine and Quadratic Forms

Difficulty of interval analysis: occurrences of the same
variables.
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Affine and Quadratic Forms

Difficulty of interval analysis: occurrences of the same
variables.

For example: x — x, with x € [0, 1] yields to

[0,1] —[0,1] = [-1,1].



Affine and Quadratic Forms

Glsttzl) Difficulty of interval analysis: occurrences of the same
Optimization
Methods based variables
on Interval : i i
analysis For example: x — x, with x € [0, 1] yields to

Frédéric Messine [0’ 1] — [0’ 1] = [_17 1]
Idea: Keep affine information during the computations.

Baumann, LBV GQF(X) C QF(X) C AFy(X) C AF1(X) = AF(X)
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Affine and Quadratic Forms

Glsttzl) Difficulty of interval analysis: occurrences of the same
Optimization
Methods based variables
on Interval : i i
analysis For example: x — x, with x € [0, 1] yields to

Frédéric Messine [0’ 1] — [0’ 1] = [_17 1]
Idea: Keep affine information during the computations.

GQF(X) C QF(X) C AF»(X) C AF1(X) = AF(X)

Affin: Forms Example
Let f(x,y) = x2y — xy? and (x,y) € X2 = [-1,3]?



Affine and Quadratic Forms

Glsttzl) Difficulty of interval analysis: occurrences of the same
Optimization
Methods based variables
on Interval : i i
analysis For example: x — x, with x € [0, 1] yields to

Frédéric Messine [0’ 1] — [0’ 1] = [_17 1]
Idea: Keep affine information during the computations.

GQF(X) C QF(X) C AF»(X) C AF1(X) = AF(X)

Affne Forms. Example
Let f(x,y) = x2y — xy? and (x,y) € X2 = [-1,3]?
Inclusion functions:
> AF(X) = AF(X) = [—44,44],
> AFy(X) = QF(X) = [—40,40],
> GQF(X) = [—24,24],
» NE(X) = [-36,36].



Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine

Unconstrained
IBBA Algorithms
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Numerical
Examples

Accelerating
Techniques

Outline

Interval Branch and Bound Algorithms: Unconstrained Case
Principle of IBBA Algorithm

Numerical Examples
Accelerating Techniques
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Branch and Bound Algorithm for Continuous
Optimization Problems: Unconstrained Case
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Interval Branch and Bound Algorithm for
Continuous Optimization Problems:
Unconstrained Case
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Continuous Optimization Problems:
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Continuous Optimization Problems:
Unconstrained Case




Interval Branch and Bound Algorithm for
Continuous Optimization Problems:
Global Unconstrained Case
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IBBA Principle

Fxy i '
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Interval Branch and Bound Algorithm for
Continuous Optimization Problems:
Unconstrained Case




Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine

IBBA Principle

Principle of an Interval Branch and Bound
Algorithm due to Ichida-Fujii: Unconstrained Case

» Choice and Subdivision of the box X, (in 2 parts for each
iteration) == list of possible solutions,

» (Reduction of the sub-boxes, by using a monotonicity
tests ...),

» Computation of bounds of a differentiable function f
over a sub-boxe, (inclusion functions)

» Elimination of the sub-boxes which cannot contain the
global optimum: FL(X) > f, where f denotes the current
solution,

» STOP when accurate enclosures of the optimum are
obtained.
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Subdivision and Stopping Criteria

» Choice a box in a list:

» Largest box,
» Oldest box,
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:

» Largest box,
» Oldest box,
» The box which has the lowest lower bound.



Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

Global
Optimization
Methods based
on Interval
analysis

» Choice a box in a list:

» Largest box,

» Oldest box,

Frédéric Messine » The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

IBBA Principle
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:
» Largest box,
» Oldest box,
» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.
> Bisection of a box:
» in two equal parts following the largest edge,
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:

» Largest box,

» Oldest box,

» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

» Bisection of a box:

» in two equal parts following the largest edge,
> in two parts following the Baumann center,
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:
» Largest box,
» Oldest box,
» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

» Bisection of a box:
» in two equal parts following the largest edge,
> in two parts following the Baumann center,

> in two equal parts following the largest
D,' = W(G,(X))W(X,)



Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

Global
Optimization
Methods based
on Interval > Lal’geSt bOX,
analysis » Oldest box,
IFeslate (s » The box which has the lowest lower bound.

» Other Heuristics, see Csendes et al.

» Choice a box in a list:

» Bisection of a box:
» in two equal parts following the largest edge,
> in two parts following the Baumann center,
I8 il > in two equal parts following the largest
Di = w(Gi(X))w(X;)
» Multisection methods, see Csendes et al., and
Lagouanelle-Soubry (JOGO 2004) for theoritical results
on optimal multisection techniques.
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:
» Largest box,
» Oldest box,
» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

» Bisection of a box:

» in two equal parts following the largest edge,

> in two parts following the Baumann center,

> in two equal parts following the largest
Di = w(Gi(X))w(X;)

» Multisection methods, see Csendes et al., and
Lagouanelle-Soubry (JOGO 2004) for theoritical results
on optimal multisection techniques.

» Stopping criteria:

» the smallest lower bognd of all the boxes in the list is
sufficiently closed to f,
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:
» Largest box,
» Oldest box,
» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

» Bisection of a box:

» in two equal parts following the largest edge,

> in two parts following the Baumann center,

> in two equal parts following the largest
Di = w(Gi(X))w(X;)

» Multisection methods, see Csendes et al., and
Lagouanelle-Soubry (JOGO 2004) for theoritical results
on optimal multisection techniques.

» Stopping criteria:
» the smallest lower bound of all the boxes in the list is

sufficiently closed to f
» the largest box in the list is less than a given e,
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

» Choice a box in a list:
» Largest box,
» Oldest box,
» The box which has the lowest lower bound.
» Other Heuristics, see Csendes et al.

» Bisection of a box:

» in two equal parts following the largest edge,

> in two parts following the Baumann center,

> in two equal parts following the largest
Di = w(Gi(X))w(X;)

» Multisection methods, see Csendes et al., and
Lagouanelle-Soubry (JOGO 2004) for theoritical results
on optimal multisection techniques.

» Stopping criteria:

> the smallest lower bound of all the boxes in the list is

sufficiently closed to f

» the largest box in the list is less than a given e,
» Combination of both.
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Numerical Examples: Baumann Form vs
Admissible Simplex Form

Standard-PC computer with an 1.8GHz AMD Athlon
Processor and 256Mb RAM using a Fortran-90 compiler.

All the computations, even the floating-point operations, are
performed using rounded interval analysis.

14 differentiable functions from the literature, as for examples:
CA(X) =14 (6 +2)x + x1x2, x1 € [1,2], % € [-10,10]
e=1078, f* = —3.5,x* = (2,-1.5).
- h(x) = 2x¢ — 1.05x{ + x2 — x1x2 + £x5, Vx; € [—2,4]
e =10"8 f* = —239.696, x* = (4,1.115).
—h(x) = —=2x¢ — L.05x} + x3 — x1x2 + x5, Vx; € [—2,4]
e =10"8 f* = —239.696, x* = (4,1.115).
CB(X)=(a -2 —7)2+ (2x +x2 —5)%,x €
[-2.5,3.5],x € [-1.5,4.5] ¢ = 1078,
f*=0.45x* = (3.4,-1.5).
Where, f* represents the optimal value and x* a
corresponding optimizer.
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Numerical Results (1)

Pbs 71 7B A5 MIXED
Its | time(s) Its | time(s) Its | time(s) Its | time(s)
f 167 0.16 133 0.11 131 0.11 132 0.11
fo 87 0.11 87 0.11 84 0.16 86 0.11
—f 116 0.17 109 0.11 84 0.16 110 0.11
f3 124 0.11 107 0.11 101 0.11 101 0.11
fa 5503 2.64 3847 1.92 3734 1.92 3731 2.15
fo 735 0.39 364 0.22 364 0.33 364 0.33
—fg 148 0.21 127 0.22 128 0.22 125 0.17
f 2464 1.27 1585 0.77 1136 0.60 1183 0.66
f7 13856 4.50 9908 3.46 9778 3.63 9587 3.84
fg 266973 2649.10 112841 496.2 57023 116.33 57023 116.87
fo 1222 0.49 753 0.27 691 0.27 687 0.28
fio 1270 0.39 813 0.28 693 0.27 689 0.28
f11 38048 68.22 26894 42.89 21583 27.91 21583 28.17
—f1 265 0.17 183 0.11 180 0.17 178 0.22
Table: Numerical Results with f(c)
where ¢ = mid(X).
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Numerical Results (2)

Pbs T1+ f(c") TB + f(cg ) AS + f(c) MIXED + f(c") or f(cg )
Its | time(s) Its | time(s) Its | time(s) Its | time(s)
f 95 0.05 72 0.05 73 0.05 71 0.06
fo 41 0.05 39 0.05 37 0.06 37 0.05
—f 64 0.05 56 0.06 84 0.16 53 0.05
f3 71 0.05 57 0.06 54 0.06 54 0.06
fa 5503 2.47 3847 1.81 3734 1.92 3731 1.98
f 453 0.16 21 0.05 213 0.05 213 0.05
s 49 0.01 25 0.04 2 0.01 2 0.01
f 1330 0.55 840 0.33 507 0.33 596 0.33
f 13856 3.95 9908 260 | o778 319 | o587 313
f 266885  2744.02 | 112769  492.73 | 57023  113.92 | 56987 11655
fo 1222 0.22 753 0.16 691 0.22 687 0.21
fio 1270 0.32 811 0.06 693 0.17 689 0.11
f11 38048 67.44 26894 42.62 21583 27.63 21583 28.23
—f1 217 0.05 135 0.01 132 0.05 130 0.01
Table: Numerical Results with f(c’) or f(cg)
where ¢’ = mid(X) but ¢/ = a; if L; > 0 and else ¢/ = b;.
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Numerical Results (3)

Pbs MIXED + f(c) MIXED + f(c’) or f(cg )

Nb AS [ Nb Baumann [ Nb equality Nb AS [ Nb Baumann [ Nb equality
f 193 27 44 116 11 15
f 85 10 77 52 4 18
—f 109 31 72 81 5 20
f3 167 0 35 91 0 17
fa 6696 763 3 6696 763 3
fs 508 60 160 332 19 75
—fs5 26 15 209 26 15 11
fe 2024 176 166 332 19 75
f7 13624 2974 2576 13624 2974 2576
fg 107818 93 6135 107748 93 6133
fo 1198 58 118 1198 58 118
fi0 1088 108 182 1088 108 182
fi1 32250 57 10859 32250 57 10859
—fi1 155 79 122 155 79 26

Table: Number of computed lower bounds




Numerical Results: Affine and Quadratic
Arithmetic

Global
Optimization Functions Initial Domain of Research
Witk e A() =1+ (4 + 20 + x4 [1 .21 X [~10,10]
on Inte.rval 1 — 35
SIERES fr(x) = X13X2 + x22><3x} - 2XgX1 + 3x2x}x5 = [—10, 10]°
Frédéric Messine fz* = —1042000
f(x) = (x1 — 2x0 — 7)2 + (2x1 + xp — 5)° X = [—2.5,3.5] X [~1.5,4.5]
£ =0.45
fa(x) = [1+ (q + x2 + 1)2 X = [—2, 27 Golstein Price function
(19 — 14x; + 3x7 — 14xp + 6x1x2 + 3x3)]
X[30 + (2x1 — 3x)? ff=3
(18 — 32x; + 12x% + 48xp — 36x1x0 + 27x2)]
() = Ga — 1)(a +2)0e + Dx — 25 f 2,2
IBBA Principle > > > f = _36
A fo(x) = 4x7 — 2x1x0 + 4x5 — 2xpx3 + 4x3 — 2x3x4 X =[-1,3] x [-10,10] x [1,4] x [-1,5]
Examples +4x2 + 2x1 — xp +3x3 + 5xg =577
/1\:‘\,1,:“[: fz(x) = x13x2 txgzxgx‘, — 2X§X1 + 3x2x4 x5 . X =[-10, 10]5
885 £ = —1667708716.3372
fg(x) = 4x1 —2. 1x1 + X1 + x1xp — 4><2 + 4><2 X = [—1000, 1000]? Ratschek function
fs = —1.03162845348366
fo(x) = 4x? + 2x3 — Bxix3 + bx3xz X = [~10, 10P
—x3 + 3xaxp — x3xa + 2x1x5 + 5x2x2 fy" = —12001.8518518519
flo(x) = 6.94x] + 0.96x; + 9.68x7 + 4.16x, X = [—50, 50]°A random polynomial
+7.53x5 — 7.68x3 + 8.21x3 — 1.75x function
—7.45x1x0 + 9.15x1 x5 + 3.70x1 x5 — 4.81xx, ft = —0.61585524178857
—3.06x2x2 — 0.79x3x; — 0.18

Table: Test Functions
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Frédéric Messine Pbs NE Ty AAR AQR
CPU ¢ CPU ¢ CPU ¢ CPU ¢
f 499 109 03 10 T 04 10 13 04 10 T
f 06 107% | 1461 1078 1.0 1078 20 1078
f 139 1077 04 1071 05 1074 06 107
f 6120 1 99 1012 6.1 10 12 32 10712
fi 1301 1074 1.0 107 % 09 10712 12 10712
fs 3076 107! | 1358 1072 134 1071 158 10712
X f 06 107° - - 171 1074 76 107°
IBBA Principle 2 —14 —14 —14
e f 39 10 26 10 85 10 42 10
Examples fy 37 1071 86 10 10 33 10710 74 10710
Accelerating fio 64.8 10-3 25 10-14 8.1 1014 33 10-14
Techniques
avg 118.7s 34.1s (without f7) 5.9s 4.5s

Table: Comparative Tests between Different Inclusion Functions



Numerical Results: Affine and Quadratic
Arithmetic (1)
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Frédéric Messine Pbs NE T1 AAR AQR
# its # clst # its # clst # its # clst # its # clst
f 31501 16193 287 35 227 34 168 28
f 248 21 9148 21 314 25 269 36
3 26453 10597 335 48 280 42 206 38
fa 117552 14231 6536 114 1849 39 1071 22
fs 49432 20783 1832 130 919 81 698 64
fe 47738 40580 10980 3096 5495 1057 4121 1309
f7 257 37 o o 3278 827 626 166
IBBA Principle fg 13125 7089 4431 91 3009 93 1553 31
N fo 10190 4770 2214 98 979 76 797 58
Examples fio 26419 19732 1724 31 1180 35 632 12
Accelerating avg 32292 50400 4165 407 1753 231 1004 176
Techniques (without ;)

Table: Comparative Tests between Different Inclusion Functions



Interval Branch and Bound Algorithm:
Accelerating Subroutines

Global . . .
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analysis . .
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» Monotonicity Test
if Gi(X)E > 0 then

X = [XL,XL]
if G,-(X)U < 0 then
X; =[xV x!]
Examples

Reduction of the research on a face of X for all /.

Accelerating
Techniques
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on Interval enclosure of the gradient of f over X and H(X) is an
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Frédéric Messine
» Monotonicity Test
if Gi(X)E > 0 then

X; =[xt x1]
if G/(X)Y < 0 then
IBBA Principle X,' n— [XU./ XU]
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Accelerating
Techniques

Reduction of the research on a face of X for all /.
» Convexity Test
if H;;(X)Y < 0 for a i then
the hessian matrix cannot be semi-definite
positive over X
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Interval Branch and Bound Algorithm:
Accelerating Subroutines

Notations: X C R”, we consider f over X, G(X) is an
enclosure of the gradient of f over X and H(X) is an
enclosure of the Hessian matrix of f over X.

» Monotonicity Test
if Gi(X)E > 0 then
X; := [xt, xH]
if Gi(X)V <0 then
X; = [xY,xY]
Reduction of the research on a face of X for all /.
» Convexity Test
if H;;(X)Y < 0 for a i then
the hessian matrix cannot be semi-definite
positive over X
there is no stationary point in X
X can be deleted.
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1. Choose x € X,
2. Solve H(X)(x — Y) = Vf(x), denote Z the resulting
enclosure of the solution Y
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Interval Branch and Bound Algorithm: Interval
Newton Step

Global
N Notations: X C R”, we consider f over X, G(X) is an
o el enclosure of the gradient of f over X and H(X) is an
enclosure of the Hessian matrix of f over X.

One Interval Newton Step:

Frédéric Messine

1. Choose x € X,

2. Solve H(X)(x — Y) = Vf(x), denote Z the resulting
S enclosure of the solution Y
-2 3. X' =XNZ.

Accelerating
Techniques
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Interval Branch and Bound Algorithm: Interval
Newton Step

Notations: X C R”, we consider f over X, G(X) is an
enclosure of the gradient of f over X and H(X) is an
enclosure of the Hessian matrix of f over X.
One Interval Newton Step:

1. Choose x € X,

2. Solve H(X)(x — Y) = Vf(x), denote Z the resulting
enclosure of the solution Y

3. X =XnNnCZ

Property
» If € is a zero of Vf then £ € X'.
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Interval Branch and Bound Algorithm: Interval
Newton Step

Notations: X C R”, we consider f over X, G(X) is an
enclosure of the gradient of f over X and H(X) is an
enclosure of the Hessian matrix of f over X.
One Interval Newton Step:

1. Choose x € X,

2. Solve H(X)(x — Y) = Vf(x), denote Z the resulting
enclosure of the solution Y

3. X':=XNnZ.
Property

» If € is a zero of Vf then £ € X'.
> If X' = () then Vf does not have a zero in X.
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Interval Branch and Bound Algorithm: Interval
Newton Step

Notations: X C R”, we consider f over X, G(X) is an
enclosure of the gradient of f over X and H(X) is an
enclosure of the Hessian matrix of f over X.
One Interval Newton Step:

1. Choose x € X,

2. Solve H(X)(x — Y) = Vf(x), denote Z the resulting
enclosure of the solution Y

3. X =XnNnCZ

Property

» If € is a zero of Vf then £ € X'.
> If X' =) then Vf does not have a zero in X.
» If Z C X then a zero exists in X.



Pruning Techniques based on T;, Baumann and
LBVF: Univariate Case

Global
Optimization
Methods based
on Interval
analysis

Frédéric Messine

Idea: What can we do with a solution #?

IBBA Principle
Numerica
Examples
Accelerating
Techniques



Global
Optimization
Methods based
on Interval
analysis

Frédéric Messine

IBBA Principle
Numerica
Examples

Accelerating
Techniques

Pruning Techniques based on T;, Baumann and
LBVF: Univariate Case

Idea: What can we do with a solution ?
The solution in X is over the line y = f.
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Pruning Techniques based on T;, Baumann and
LBVF: Univariate Case

Idea: What can we do with a solution ?
The solution in X is over the line y = f.
— Discard some parts of the box.
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Pruning Techniques based on T;, Baumann and
LBVF: Univariate Case

Idea: What can we do with a solution ?

The solution in X is over the line y = f

— Discard some parts of the box.

Example:

Consider f(x) =x? —x,x € X =[0,2] and f= —% (the
global minimum value)
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Methos based f(x) =x* —x,x € X =[0,2], LBVF(X) = —1
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Principle of a Branch and Bound Algorithm for a
problem with constraints

Opt?ll:i';:i:ion NOtatiOn:
Methods based min f(X)
on Inte_rval x€Rn
analysis gi(X) S oVvie {1’_..7ng}
Frédéric Messine hj(X) = O VJ (= {]_, ey nh}

» Choice and Subdivision of the box X, (in 2 parts by step): list
of possible solutions,

» Reduction of the sub-boxes, by using a constraint propagation

technique,
IBBA Principle > Computation of bounds of the functions F, G;, H; on the
Fropagation sub-boxes, - inclusion functions -

Mixed Problems

» Elimination of the sub-boxes which cannot contain the global
optimum: FL(X) > for GH(X) > 0 or 0 & H(X), where f
denotes the current solution,

» STOP when accurate enclosures of the optimum are obtained.
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c(x) € [a, b] is a contraint = implicit (or explicit) relations
between the variables of the problem.
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c(x) € [a, b] is a contraint = implicit (or explicit) relations
between the variables of the problem.

Idea: use some deduction steps for reducing the box X.
n

Linear case: if ¢(x) = Z aix; then:
i=1

n

[a, b] — Z a,-X,-
X, = ":1”'# N Xy, siax#£0. (1)
k

where k is in {1,---,n} and X; is the ith component of X.
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Propagation Techniques

c(x) € [a, b] is a contraint = implicit (or explicit) relations
between the variables of the problem.

Idea: use some deduction steps for reducing the box X.

n
Linear case: if ¢(x) = Z aix; then:
i=1

n
[a, b] - Z a,-X,-
Xi = e A Xy, siag £0. (1)
ak
where k is in {1,---,n} and X; is the ith component of X.

Non-linear case: Idea (E. Hansen): one linearizes using Ty (or
T2). Then one solve a linear system with interval coefficients.
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Propagation Techniques

c(x) € [a, b] is a contraint = implicit (or explicit) relations
between the variables of the problem.

Idea: use some deduction steps for reducing the box X.
n
Linear case: if ¢(x) = Z aix; then:
i=1

n

[a,b]— Z a,-X,-

Xi = e A Xy, siag £0. (1)
ak
where k is in {1,---,n} and X; is the ith component of X.

Non-linear case: Idea (E. Hansen): one linearizes using Ty (or
T2). Then one solve a linear system with interval coefficients.
Other Idea: construction of the calculus tree and propagation.
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where x; € [1,3] for all i € {1,2,3}.

IBBA Principle

Propagation




Global
Optimization
Methods based
on Interval

analysis

Frédéric Messine

IBBA Principle
Propagation
Techniques
Mixed Problems
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Calculus Tree

Let c(x) = 2x3x2 + x1 and
c(x)=3

where x; € [1,3] for all i € {1,2,3}.
The propagation is:

+[321]

/\

* [2.18] X#[13]

* [26] X,=(13]

2 X, =[13]




Example of Propagation Technique based on the
Calculus Tree

Global Let C(X) = 2x3x> + x1 and

Optimization
Methods based

e c(x) =3
Frédéric Messine
where x; € [1,3] for all i € {1,2,3}.
The propagation is:

+[321] e
* [2,18] = * 313 _
IBBA Principle X 13 osp X, 31218 =161
Propagation (11
Techniques
Mixed Problems
- * [0.21 0,2] [0,2]_
* [2,6] X,=[13] 13ried X, (25 104
[11]
2 X, =[13) 2 %, @301
111
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Frédéric Messine €lectrical machines such as the diameter).

Discrete variables: integer (number of pair of poles of a
machine), boolean (machine with or without slot), categorical
variable (which kind of magnet is used).

For integer and boolean variables = relaxation for
computing bounds + particular bisection technique and
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Algorithms for Mixed Problems

Continuous variables: real variables (dimensions of an
electrical machines such as the diameter).

Discrete variables: integer (number of pair of poles of a
machine), boolean (machine with or without slot), categorical
variable (which kind of magnet is used).

For integer and boolean variables = relaxation for
computing bounds + particular bisection technique and
propagation.

For categorical variables = we introduce 4 particular
algorithms with propagation and retro-propagation +
properties about the bisection techniques.
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Direct and Inverse Problem of Design and Formulations
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Direct and Inverse Problem of Design

1 — Direct Problem of Design

<

Direct Solve of
the Maxwell’s
Equations
By Finite
Element Mcthods

2 — Inverse Problem of Dimensioning

PR—

Analytical
Mode] of the
given structure

3 —Inverse Problem of design

Type of
strueture,
dimensions and
consbtutions

Functions:

min mass

min vohume

Objectives :
min masse

min volume

CHARACTERISTICAL
VALUESFORA
CGIVEN STRUCTURE

Sore assumplions
on the Maxwaeil's
Bguations ==
Analvtical Models
(sumple)

Mode! associating
many different
elementary structures

Ganeral Modsl
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» Dimensioning Inverse Problem:

min f(x)
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Mathematical Formulation

» Dimensioning Inverse Problem:

min f(x)

xeR"

gi(x) <0Vie{l,...,ng}
hj(X)ZOVjG{l,...,nh}

» More General Inverse Problem of Design:

min f(x,z,0,b
x€RMr zeNne | ( e )
o€[}<, Ki,beB"b

gi(x,z,0,b) <0Vie{l,...,ng}
hj(X,Z,O‘,b) =0Vje {1,...,nh}



Rotating Machines with Magnetic Effects

Opt
Metlt R .
on * Criteria:
at Axwip
Frédé s =J{D(D+Efefi WA+ E+e+l )
ap = @ a
A i,
B y
Vi =8l —(D-2e-1,)
A
il
P}:x,ﬂm ;(D+ E)Eck
Constraints :
Cun = 320~ £,)JEBE,ED*(D+ E)E,
E 2; P
B, SAl, £ 6EI2.K, 51508 —— 8, = 2
5} D+2FE
Direct Dleg | ——
Probl D=2+ &)
Exam z D
G BB i —€ SO KR 20
4 pB i A 5
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Example for the Dimensioning of an Electrical
Motor

Electrical Slotless Rotating Machines with Permanent Magnet:

» IBBA standard (defined by Ratschek and Rokne 1988)
— 1h35,
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Direct and Inverse )
i » IBBA standard (defined by Ratschek and Rokne 1988)
—— 1h35,

» IBBA + propagation due to E. Hansen — 41.5s,



Example for the Dimensioning of an Electrical
Motor

Global : 5 . .
Optimization Electrical Slotless Rotating Machines with Permanent Magnet:
Methods based

on Interval
analysis

Frédéric Messine

Direct and Inverse

e » IBBA standard (defined by Ratschek and Rokne 1988)
— 1h35,

» IBBA + propagation due to E. Hansen — 41.5s,
» IBBA + propagation with the calculus tree — 0.5s.



Combination of Different Rotating Electrical

Machines
Global b
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O by Inverse Rotor Internal Rotor
Methods based
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Direct and Inverse N
Problem 1
Examples ([)
Ny,
b; Rectangular or Sinusoidal Waveform

Figure: 4 structures possible machines x2 modes (rectangular or
sinusoidal waveform).



Discrete Variables for Modeling Electrical

Machines
Global
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Methods based
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analysis
Frédéric Messi o 5 . . 5 .
eee e 1. b, = 1 for machines with an internal rotoric configuration

and b, = 0 for an external one,
2. be = 1 for machines with slots or b, = 0 slotless
machines,

3. br =1 represents rectangular waveform or by = 0 for a
sinusoidale one.

3 boolean variables to represent 8 possible structures + 2
Direct and Inverse . 5
Problem categorical variables.

Examples
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Combinatorial Models for Electrical Machines

Fem = krD[D+ (1 — be)(2b, — 1)E] LBcKs,
. a
KS = krEJ (beﬁ_d + (1 - be)) )

o — 72r[b,c[l—Kf]\/B+(1—bf)\f5in(5g)],

Ki = 15pﬁ[ gg] (L — be).br,

B, — 2 0m)l l
D+2E(2b,—1)(1=be) | k¢’
(2br — 1)D|n [ D—2(2b,—1)[+g] } ‘
1
ke = ’
Ne a2
1 — be [m}

Generally, the torque lep, is fixed => a strong equality



Examples of 4 optimal machines with magnetical
effects

Global
Optimization
Diee e Min Velume of Magnets Min Volume of active parts
on Interval
analysis
- internal rotor
- sinuzoidal wav.

- internal rotor

Frédéric Messine
- rectangular wav.

| 1 A - with slot - slotless

nterval Analysis - mag, powdets - sheet metal
Computation of -p=2 -p=6

Bounds - magnet NdFeB - magnet IdFeB
Unconstrained

IBBA Algorithms

Mixed and i i )

Constrained Min Welght Min Global Volume

Problems

Design of - internal rotor - internal rotor
Machines - sinugoidal wav. - rectangular wav

Direct and Inverse
Problem

Examples

N
- slotless .:' - with slot
= - sheet metal
-

- mag powders
-p=6 -p=35
Realizations & - special-magnet - magnet MdFeB

Conclusion




Numerical Validations
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Interval Analysis

Computation of
Bounds

Unconstrained
IBBA Algorithms

Mixed and
Constrained
Problems

Design of
Machines

Figure: Draw 2 optimal solutions (min mass and min multicriteria).
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Conclusion
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Extension: Numerical Validations
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Figure: Torque of 3 solutions and design of teeth of the slot.

Direct and Inverse
Problem

Examples

Using Triangle and EFCAD.
Name of the Software: NUMT.
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Interval Analysis
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Bounds
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IBBA Algorithms
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Conclusion

Figure: Design of piezoelectric bimorphs.
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