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Introduction to Deterministic Global Optimization

I Multistart Method
I Metaheuristic Methods

I Taboo Research, (Glover and Hansen),
I VNS, (Mladenovitch and Hansen),
I Kangourou Method...

I Stochastic Global Optimization Methods
I Simulated Annealing,
I Genetic Algorithms,
I Evolutionary Algorithms...

I Deterministic Global Optimization Methods
I Particular structure of problems:

I Convex functions + Theory,
I Linear programs: Simplex Algorithm (Danzig)
I Quadratic programs: (Sherali, Audet, Hansen et al.)...,

I More General Problems =⇒ Branch and Bound
Techniques

I Difference of convex or monotonic functions, (Horst and
Tuy),

I Interval analysis (Ratsheck, Rokne, E. Hansen)...
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Interval Analysis

Let X = [xL, xU ] and Y = [yL, yU ] 2 intervals.
Moore (1966) defines the interval arithmetic as follows:

[xL, xU ] + [yL, yU ] = [xL + yL, xU + yU ]
[xL, xU ]− [yL, yU ] = [xL − yU , xU − yL]
[xL, xU ]× [yL, yU ] =

[
min{xLyL, xLyU , xUyL, xUyU},

max{xLyL, xLyU , xUyL, xUyU}
]

[xL, xU ]÷ [yL, yU ] = [xL, xU ]× [
1

yU
,

1

yL
] if 0 6∈ [yL, yU ].

Remark
Subtraction and division are not the inverse operations of
addition and respectively multiplication.

Difficulties:
÷0 =⇒ extended interval arithmetic, (E. Hansen).
Numerical errors =⇒ rounded interval analysis, (Moore).
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Some Properties of Interval Analysis and Inclusion
Function

Property

For all x ∈ X and y ∈ Y , one has: x ? y ∈ X ? Y , where ? is
+,−,×,÷.

Property

Let A,B,C 3 intervals, therefore
A× (B + C ) ⊆ A× B + A× C .

Property

Let Y1,Y2,Z1,Z2 4 intervals, if Y1 ⊆ Z1 and if Y2 ⊆ Z2 then
Y1 ? Y2 ⊆ Z1 ? Z2 where ? is +,−,×,÷.

Definition
An inclusion function F (X ) of f over a box X is such that

f (X ) := [min
x∈X

f (x),max
x∈X

f (x)] ⊆ F (X ) = [F L(X ),FU(X )]
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Natural Extension: an Inclusion Function

Theorem
The natural extension into interval of an expression of f over
a box X is an inclusion function.

Example

Let f (x) = x2 − x + 1 and x ∈ X = [0, 1]

Inclusion functions:

I F1(X ) = X 2 − X + 1 = [0, 1]2 − [0, 1] + [1, 1] = [0, 2],

I F2(X ) = X (X − 1) + 1 = [0, 1]([0, 1]− 1) + [1, 1] =
[0, 1]× [−1, 0] + [1, 1] = [0, 1],

I F3(X ) =

(
X − 1

2

)2

+
3

4
=

[
−1

2
,
1

2

]2

+
3

4
=

[
3

4
, 1

]
,
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Rounded Interval Analysis

Let X = [a, b] and Y = [c , d ] 2 intervals.
Moore defines also the rounded interval arithmetic as follows:

[a, b] + [c , d ] = [a + c , b + d ]

[a, b]− [c , d ] = [a− d , b − c]
[a, b]× [c , d ] = [min{ac, ad , bc , bd},

max{ac, ad , bc , bd}
]

[a, b]÷ [c , d ] = [a, b]× [
1

d
,
1

c
] if 0 6∈ [c , d ].

Where a, resp. a, represents the nearest under, resp. over,
floating point representation of the real x
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Extended Interval Analysis

Let X = [a, b] and Y = [c , d ] 2 intervals.
E. Hansen defines the extended interval arithmetic for the
division X/Y with 0 ∈ Y , as follows:

X/Y =



[b/c ,+∞], if b ≤ 0 and d = 0,
[−∞, b/d ] ∪ [b/c ,+∞], if b ≤ 0 and c < 0 < d ,
[−∞, b/d ], if b ≤ 0 and c = 0,
[−∞,+∞], if a < 0 < b,
[−∞, a/c], if a ≥ 0 and d = 0,
[−∞, a/c] ∪ [a/d ,+∞], if a ≥ 0 and c < 0 < d ,
[a, b]± [−∞,+∞] = [−∞,+∞]
[a/d ,+∞], if a ≥ 0 and c = 0,

For the addition and the substraction:
[a, b] + [−∞, d ] = [−∞, b + d ]
[a, b] + [c ,+∞] = [a + c ,+∞]
[a, b]± [−∞,+∞] = [−∞,+∞]
[a, b]− [−∞, d ] = [a− d ,+∞]
[a, b]− [c ,+∞] = [−∞, b − c]
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Inclusion Functions based on Taylor’s Expansions:
Univariate Case

Let f be a univariate differentiable function, and x , y and ξ, 3
variables of X an interval of R.

f (x) = f (y)+(x−y)f ′(y)+
(x − y)2

2
f ′′(y)+. . .+

(x − y)n

n!
f (n)(ξ)

Let denote F (n)(X ) an enclosure of f (n)(ξ) over X (computed
with an interval automatic differentiation tool).

Hence,

f (x) ∈ f (y)+(x−y)f ′(y)+
(x − y)2

2
f ′′(y)+. . .+

(x − y)n

n!
F (n)(X ),∀y ∈ X , and ∀n.

2 inclusion functions:
I T1(y ,X ) = f (y) + (X − y)F ′(X )

I T2(y ,X ) = f (y) + (X − y)f ′(y) +
(X − y)2

2
F ′′(X )
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Baumann Centered Forms: Univariate Case

Optimal Baumann center cB for the best lower bound for T1:

zB := T L
1 (cB ,X ) = max

y∈X
T L

1 (y ,X ) =
(
f (y) + (X − y)F ′(X )

)L

Optimal Baumann center cB for the best upper bound for T1:

zB := TU
1 (cB ,X ) = min

y∈X
TU

1 (y ,X ) =
(
f (y) + (X − y)F ′(X )

)U

Baumann in 1988 gives analytical solution for cB (and cB).

cB :=
xL(F ′)U(X )− xU(F ′)L(X )

(F ′)U(X )− (F ′)L(X )

if 0 6∈ F ′(X ), else monotony case.
Easy to generalize to multivariate differentiable functions.
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Example of Baumann Lower Bounds: Univariate
Case

cB

zB

xL Ux
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Linear Boundary Value Form of Neumaier and
Hansen et al. 90-92: Univariate Case

Start with f (x) ∈ f (y) + (x − y)F ′(X ),∀(x , y) ∈ X 2

Case when 0 ∈ F ′(X ) (else it is obvious):

2 affine underestimations:

I f (x) ≥ f (xL) + (x − xL)(F ′)L(X ),∀x ∈ X ,

I f (x) ≥ f (xU) + (x − xU)(F ′)U(X ),∀x ∈ X ,

Therefore, the intersection is a minorant of f over X :

zlbvf =
(F ′)U(X )f (xL)− (F ′)L(X )f (xU)

(F ′)U(X )− (F ′)L(X )
+

(xU − xL)(F ′)L(X )(F ′)U(X )

(F ′)U(X )− (F ′)L(X )

Same think for constructing a majorant.
Problem for a generalization to the multivariate differentiable
case.
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Example of Neumaier and Hansen et al. Lower
Bounds: Univariate Case

x xL U

lbvfz
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Example of Kite Algorithm of Lagouanelle,
Csendès et al.

lbvfz

cB

zB

zkite

UxxL
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Comparison between Baumann and Linear
Boundary Value Forms: Univariate Case

Notations: X = [a, b] and F ′(X ) = [L,U], with L < 0 < U.

Baumann Form:

cB =
aU − bL

U − L
and zB = f (cB) +

(b − a)LU

U − L

Linear Boundary Value Form:

zlbvf =
U

U − L
f (a) +

−L

U − L
f (b) +

(b − a)LU

U − L

Comparison between:

f (cB) <>?
U

U − L
f (a) +

−L

U − L
f (b)

> BF produces the best lower bound,
< LBVF produces the best lower bound,
= equality occurs.
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Example of the use of T1, TB and LBVF
Methods: Univariate Case

f (x) = x2 − x , x ∈ X = [0, 2], and min
x∈[0,2]

f (x) = −1

4

One has:
F (X ) = [0, 2]2 − [0, 2] = [−2, 4]

and
G (X ) = 2X − 1 = [−1, 3]

T1(X ) = f (1) + ([0, 2]− 1)× [−1, 3] = [−3, 3]

cB =
1

2
,T L

B(
1

2
,X ) = −7

4
Comparison:

f (cB) = f

(
1

2

)
= −1

4
<

2× f (0)− 0× f (2)

2− 0
= 0
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(
1

2

)
= −1

4
<

2× f (0)− 0× f (2)

2− 0
= 0
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Example of the use of T1, TB and LBVF
Methods: Univariate Case

f (x) = x2 − x , x ∈ X = [0, 2], and min
x∈[0,2]

f (x) = −1

4

One has:
F (X ) = [0, 2]2 − [0, 2] = [−2, 4]

and
G (X ) = 2X − 1 = [−1, 3]

T1(X ) = f (1) + ([0, 2]− 1)× [−1, 3] = [−3, 3]

cB =
1

2
,T L

B(
1

2
,X ) = −7

4

Therefore LBVF give the best lower bound:

zlbvf = −1
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Example of the use of T1 at mid(X ): Univariate
Case

f (x) = x2 − x , x ∈ X = [0, 2],T L
1 (X ) = −3
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Example of the use of T1 at the Baumann center
c−B : Univariate Case

f (x) = x2 − x , x ∈ X = [0, 2],TB(X ) = −1.75
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Example of the use of LBVF : Univariate Case

f (x) = x2 − x , x ∈ X = [0, 2], LBVF (X ) = −1
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Example of the use of the Kite Algorithm

f (x) = x2 − x , x ∈ X = [0, 2],KITE (X ) > −1
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Translation based Method for polynomial
functions: Univariate Case

Idea: Compute bounds of f over X by translating the box X .

X −→ X + µ implies modifications of f

p(x) =
n∑

k=0

akxk =
n∑

j=0

aj((x + µ)− µ)j

=
n∑

j=0

(x + µ)j
n−j∑
k=0

ak+j

(
k + j

j

)
(−µ)k

=
n∑

j=0

fj(µ)(x + µ)j ,

with fj(µ) =

n−j∑
k=0

ak+j

(
k + j

j

)
(−µ)k .
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Example for Translation based Method:
Univariate Case

Example

Let p(x) = 7x4 − 5x3 + 4x2 + 3x + 2 and x ∈ X = [0, 10]

Lower bounds: (global optimum about 3).

I NEL(X ) = −4.9 103,

I HL(X ) = −4.57 103,

I T L
1 (X ) = −1.37 105,

I T L
B(X ) = −1.42 104,

I T L
2 (X ) = −1.56 104,

I TransL(X ) = 1.92 with µ = −0.87.
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Example for Translation based Method:
Univariate Case

Example

Let p(x) = 7x4 − 5x3 + 4x2 + 3x + 2 and x ∈ X = [0, 10]

Lower bounds: (global optimum about 3).

I NEL(X ) = −4.9 103,

I HL(X ) = −4.57 103,
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Inclusion Functions based on Taylor’s Expansions:
Multivariate Case

Let f be a multivariate differentiable function, and x and y , 2
variables of X an interval of Rn.

2 inclusion functions:

I T1(y ,X ) = f (y) + (X − y).G (X )

= f (y) +
∑n

i=1(Xi − yi ).Gi (X )

I T2(y ,X ) = f (y)+(X−y)f ′(y)+
1

2
(X−y)T .H(X ).(X−y)

G (X ) represents the enclosure of the gradient and H(X ) the
enclosure of the Hessian matrix over X .
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Notations and Assumptions

Notations:

I X = (X1, . . . ,Xn), where Xi ⊆ R,

I Xi = [ai , bi ],

I
∂f

∂xi
(x) ∈ [Li ,Ui ],

I f is define from X to R.

Assumptions:

I Li < 0 < Ui (else monotonicity case),

I f is one time differentiable over X .



Global
Optimization

Methods based
on Interval
analysis

32/ 86

Frédéric Messine

Interval Analysis

Computation of
Bounds

Baumann, LBVF
and Translation
Methods

T1, Baumann, ASF

Affine Forms

Unconstrained
IBBA Algorithms

Mixed and
Constrained
Problems

Design of
Machines

Realizations &
Conclusion

Baumann Centered Form in the Multivariate Case

Easy to generalize to all the variables are separated:
Optimal Baumann center cB for the best lower bound for T1:

zB := T L
1 (cB ,X ) = max

y∈X
T L

1 (y ,X ) = (f (y) + (X − y).G (X ))L

Baumann (1988) gives analytical solution for cB (and cB).

(cB)i :=
aiUi − biLi

Ui − Li
,∀i ∈ {1, . . . , n}.

Hence,

zB = f (cB) +
n∑

i=1

(bi − ai )LiUi

Ui − Li
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Extension of LBVF to the Multivariate Case:
Admissible Simplex Method

n variables =⇒ 2n affine underestimations.
Choice of n + 1 of them (among 2n).
Idea: Construction of an Admissible Path from S to S
(opposite vertex of S).

I Admissible Simplex:

Figure: Example of an admissible simplex with 3 variables
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Idea: Construction of an Admissible Path from S to S
(opposite vertex of S).

I Admissible Simplex:

Figure: Example of an admissible simplex with 3 variables
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Extension of LBVF to the Multivariate Case:
Admissible Simplex Method

n variables =⇒ 2n affine underestimations.
Choice of n + 1 of them (among 2n).
Idea: Construction of an Admissible Path from S to S
(opposite vertex of S).

I Admissible Simplex:

S S
0 1

S

S2

3

 

Figure: Example of an admissible simplex with 3 variables
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Admissible Simplex Form

Sk denotes a vertex of the hypercube X .

f (x) ≥ f (Sk) +
∑
i∈Ik

(xi − ai )Li +
∑
j∈Jk

(xj − bj)Uj , forallx ∈ X ,

where Ik ⊂ N ={1, 2, . . . , n}, Jk = N − Ik and j ∈ Ik iff
(Sk)j = aj (else j ∈ Jk).

Construction of an Admissible Simplex:
Find an admissible set: of vertices S0,S1, . . . ,Sn, means that
the intersection of their corresponding hyperplane Πk =>
lower bound of f over X .
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(xj − bj)Uj , forallx ∈ X ,
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Admissible Simplex Form

S0 is the initial vertex of X ,
From Sk to Sk+1 => only one change of one component:

I Hl =| Kl | /(Ul − Ll), l = 1, . . . , n, where Kl Kl = Ll if
l ∈ I0 and Kl = Ul if l ∈ J0.

I Assume that Hl1 ≥ Hl2 ≥ . . . ≥ Hln ; From S0 change l1
to get S1, then change l2 in S1 to get S2 and so on until
one gets Sn: the opposite vertex of S0 on the box X .

This set of vertices is admissible iff

α0 = Hl1 ≤ 1, α1 = Hl1−Hl2 ≥ 0, . . . , αln−1 = Hln−1−Hln ≥ 0, αn = Hln ≥ 0.

Lower bound of ASF:

z−asf =
n∑

k=0

αk f (Sk) +
n∑

i=1

(bi − ai )LiUi

Ui − Li
.

(Computations =⇒ solve a diagonal linear system. )
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Admissible Simplex Form

S0 is the initial vertex of X ,
From Sk to Sk+1 => only one change of one component:

I Hl =| Kl | /(Ul − Ll), l = 1, . . . , n, where Kl Kl = Ll if
l ∈ I0 and Kl = Ul if l ∈ J0.

I Assume that Hl1 ≥ Hl2 ≥ . . . ≥ Hln ; From S0 change l1
to get S1, then change l2 in S1 to get S2 and so on until
one gets Sn: the opposite vertex of S0 on the box X .

This set of vertices is admissible iff

α0 = Hl1 ≤ 1, α1 = Hl1−Hl2 ≥ 0, . . . , αln−1 = Hln−1−Hln ≥ 0, αn = Hln ≥ 0.

Lower bound of ASF:

z−asf =
n∑

k=0

αk f (Sk) +
n∑

i=1

(bi − ai )LiUi

Ui − Li
.

(Computations =⇒ solve a diagonal linear system. )
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Baumann Form versus Admissible Simplex
Method: Multivariate Case

Proposition

The Baumann center is inside each admissible simplex.

Proposition

Comparison:

f (cB) <>?
n∑

i=0

αi f (Si )

> BF produces the best lower bound,

< ASF produces the best lower bound,

= equality occurs.

Property

For computing lower bounds:

I f convex =⇒ ASF.

I f concave =⇒ BF.
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Affine and Quadratic Forms

Difficulty of interval analysis: occurrences of the same
variables.
For example: x − x , with x ∈ [0, 1] yields to
[0, 1]− [0, 1] = [−1, 1].
Idea: Keep affine information during the computations.

GQF (X ) ⊆ QF (X ) ⊆ AF2(X ) ⊆ AF1(X ) = AF (X )

Example

Let f (x , y) = x2y − xy2 and (x , y) ∈ X 2 = [−1, 3]2

Inclusion functions:

I AF (X ) = AF1(X ) = [−44, 44],

I AF2(X ) = QF (X ) = [−40, 40],

I GQF (X ) = [−24, 24],

I NE (X ) = [−36, 36].
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Interval Analysis and Extensions

Interval Methods for Computing Bounds
Baumann, LBVF and Trans. Methods: Univariate Case
T1, Baumann, AS Form: Multivariate Case
Affine and Quadratic Forms

Interval Branch and Bound Algorithms: Unconstrained Case
Principle of IBBA Algorithm
Numerical Examples
Accelerating Techniques

Algorithms for Mixed and Constrained Problems
Principle of IBBA Algorithm with Constraints
Propagation Techniques
Algorithms for Mixed Problems

Application of the Design of Electrical Machines
Direct and Inverse Problem of Design and Formulations
A Simple Numerical Examples

Some Realizations and Conclusion
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Principle of an Interval Branch and Bound
Algorithm due to Ichida-Fujii: Unconstrained Case

I Choice and Subdivision of the box X , (in 2 parts for each
iteration) =⇒ list of possible solutions,

I (Reduction of the sub-boxes, by using a monotonicity
tests ...),

I Computation of bounds of a differentiable function f
over a sub-boxe, (inclusion functions)

I Elimination of the sub-boxes which cannot contain the
global optimum: F L(X ) > f̃; where f̃ denotes the current
solution,

I STOP when accurate enclosures of the optimum are
obtained.
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Interval Branch and Bound Algorithm: Choice,
Subdivision and Stopping Criteria

I Choice a box in a list:
I Largest box,
I Oldest box,
I The box which has the lowest lower bound.
I Other Heuristics, see Csendes et al.

I Bisection of a box:
I in two equal parts following the largest edge,
I in two parts following the Baumann center,
I in two equal parts following the largest

Di = w(Gi (X ))w(Xi )
I Multisection methods, see Csendes et al., and

Lagouanelle-Soubry (JOGO 2004) for theoritical results
on optimal multisection techniques.

I Stopping criteria:
I the smallest lower bound of all the boxes in the list is

sufficiently closed to f̃,
I the largest box in the list is less than a given ε,
I Combination of both.
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Numerical Examples: Baumann Form vs
Admissible Simplex Form

Standard-PC computer with an 1.8GHz AMD Athlon
Processor and 256Mb RAM using a Fortran-90 compiler.

All the computations, even the floating-point operations, are
performed using rounded interval analysis.

14 differentiable functions from the literature, as for examples:

. f1(x) = 1 + (x2
1 + 2)x2 + x1x

2
2 , x1 ∈ [1, 2], x2 ∈ [−10, 10]

ε = 10−8, f ∗ = −3.5, x∗ = (2,−1.5).
. f2(x) = 2x2

1 − 1.05x4
1 + x2

2 − x1x2 + 1
6x6

2 ,∀xi ∈ [−2, 4]
ε = 10−8, f ∗ = −239.696, x∗ = (4, 1.115).
−f2(x) = −2x2

1 − 1.05x4
1 + x2

2 − x1x2 + 1
6x6

2 ,∀xi ∈ [−2, 4]
ε = 10−8, f ∗ = −239.696, x∗ = (4, 1.115).

. f3(x) = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2, x1 ∈
[−2.5, 3.5], x2 ∈ [−1.5, 4.5] ε = 10−8,
f ∗ = 0.45, x∗ = (3.4,−1.5).

Where, f ∗ represents the optimal value and x∗ a
corresponding optimizer.
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Numerical Results (1)

Pbs T1 TB AS MIXED
Its time(s) Its time(s) Its time(s) Its time(s)

f1 167 0.16 133 0.11 131 0.11 132 0.11
f2 87 0.11 87 0.11 84 0.16 86 0.11
−f2 116 0.17 109 0.11 84 0.16 110 0.11
f3 124 0.11 107 0.11 101 0.11 101 0.11
f4 5503 2.64 3847 1.92 3734 1.92 3731 2.15
f5 735 0.39 364 0.22 364 0.33 364 0.33
−f5 148 0.21 127 0.22 128 0.22 125 0.17
f6 2464 1.27 1585 0.77 1136 0.60 1183 0.66
f7 13856 4.50 9908 3.46 9778 3.63 9587 3.84
f8 266973 2649.10 112841 496.2 57023 116.33 57023 116.87
f9 1222 0.49 753 0.27 691 0.27 687 0.28
f10 1270 0.39 813 0.28 693 0.27 689 0.28
f11 38048 68.22 26894 42.89 21583 27.91 21583 28.17
−f11 265 0.17 183 0.11 180 0.17 178 0.22

Table: Numerical Results with f (c)

where c = mid(X ).
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Numerical Results (2)

Pbs T1 + f (c′) TB + f (c−
B

) AS + f (c′) MIXED + f (c′) or f (c−
B

)
Its time(s) Its time(s) Its time(s) Its time(s)

f1 95 0.05 72 0.05 73 0.05 71 0.06
f2 41 0.05 39 0.05 37 0.06 37 0.05
−f2 64 0.05 56 0.06 84 0.16 53 0.05
f3 71 0.05 57 0.06 54 0.06 54 0.06
f4 5503 2.47 3847 1.81 3734 1.92 3731 1.98
f5 453 0.16 221 0.05 213 0.05 213 0.05
−f5 49 0.01 25 0.04 26 0.01 26 0.01
f6 1330 0.55 840 0.33 597 0.33 596 0.33
f7 13856 3.95 9908 2.69 9778 3.19 9587 3.13
f8 266885 2744.02 112769 492.73 57023 113.92 56987 116.55
f9 1222 0.22 753 0.16 691 0.22 687 0.21
f10 1270 0.32 811 0.06 693 0.17 689 0.11
f11 38048 67.44 26894 42.62 21583 27.63 21583 28.23
−f11 217 0.05 135 0.01 132 0.05 130 0.01

Table: Numerical Results with f (c ′) or f (c−B )

where c ′ = mid(X ) but c ′i = ai if Li ≥ 0 and else c ′i = bi .
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Numerical Results (3)

Pbs MIXED + f (c) MIXED + f (c′) or f (c−
B

)
Nb AS Nb Baumann Nb equality Nb AS Nb Baumann Nb equality

f1 193 27 44 116 11 15
f2 85 10 77 52 4 18
−f2 109 31 72 81 5 20
f3 167 0 35 91 0 17
f4 6696 763 3 6696 763 3
f5 508 60 160 332 19 75
−f5 26 15 209 26 15 11
f6 2024 176 166 332 19 75
f7 13624 2974 2576 13624 2974 2576
f8 107818 93 6135 107748 93 6133
f9 1198 58 118 1198 58 118
f10 1088 108 182 1088 108 182
f11 32250 57 10859 32250 57 10859
−f11 155 79 122 155 79 26

Table: Number of computed lower bounds
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Numerical Results: Affine and Quadratic
Arithmetic

Functions Initial Domain of Research

f1(x) = 1 + (x2
1 + 2)x2 + x1x2

2 X = [1, 2]× [−10, 10]
f ∗1 = −3.5

f2(x) = x3
1 x2 + x2

2 x3x2
4 − 2x2

5 x1 + 3x2x2
4 x5 X = [−10, 10]5

f ∗2 = −1042000

f3(x) = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2 X = [−2.5, 3.5]× [−1.5, 4.5]
f ∗3 = 0.45

f4(x) = [1 + (x1 + x2 + 1)2 X = [−2, 2]2 Golstein Price function

(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]

×[30 + (2x1 − 3x2)2 f ∗4 = 3

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )]

f5(x) = (x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x2
3 X = [−2, 2]3

f ∗5 = −36

f6(x) = 4x2
1 − 2x1x2 + 4x2

2 − 2x2x3 + 4x2
3 − 2x3x4 X = [−1, 3]× [−10, 10]× [1, 4]× [−1, 5]

+4x2
4 + 2x1 − x2 + 3x3 + 5x4 f ∗6 = 5.77

f7(x) = x3
1 x2 + x2

2 x3x2
4 − 2x2

5 x1 + 3x2x2
4 x5 X = [−10, 10]5

− 1
6
x5
5 x3

4 x2
3 f ∗7 = −1667708716.3372

f8(x) = 4x2
1 − 2.1x4

1 + 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 X = [−1000, 1000]2 Ratschek function

f ∗8 = −1.03162845348366

f9(x) = 4x2
1 + 2x2

2 − 5x2
1 x3 + 6x3x2

4 X = [−10, 10]5

−x3
4 + 3x4x2 − x3x4 + 2x1x5 + 5x2

5 x2 f ∗9 = −12001.8518518519

f10(x) = 6.94x4
1 + 0.96x3

1 + 9.68x2
1 + 4.16x1 X = [−50, 50]2A random polynomial

+7.53x4
2 − 7.68x3

2 + 8.21x2
2 − 1.75x2 function

−7.45x1x2 + 9.15x1x2
2 + 3.70x1x3

2 − 4.81x2
1 x2 f ∗10 = −0.61585524178857

−3.06x2
1 x2

2 − 0.79x3
1 x2 − 0.18

Table: Test Functions
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Numerical Results: Affine and Quadratic
Arithmetic (1)

Pbs NE T1 AAR AQR
CPU εp CPU εp CPU εp CPU εp

f1 49.9 10−5 0.3 10−13 0.4 10−13 0.4 10−13

f2 0.6 10−8 146.1 10−8 1.0 10−8 2.0 10−8

f3 13.9 10−7 0.4 10−14 0.5 10−14 0.6 10−14

f4 612.0 1 9.9 10−12 6.1 10−12 3.2 10−12

f5 130.1 10−4 1.0 10−12 0.9 10−12 1.2 10−12

f6 307.6 10−1 135.8 10−12 13.4 10−12 15.8 10−12

f7 0.6 10−5 — — 17.1 10−4 7.6 10−5

f8 3.9 10−2 2.6 10−14 8.5 10−14 4.2 10−14

f9 3.7 10−1 8.6 10−10 3.3 10−10 7.4 10−10

f10 64.8 10−3 2.5 10−14 8.1 10−14 3.3 10−14

avg 118.7s 34.1s (without f7) 5.9s 4.5s

Table: Comparative Tests between Different Inclusion Functions
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Numerical Results: Affine and Quadratic
Arithmetic (1)

Pbs NE T1 AAR AQR
# its # clst # its # clst # its # clst # its # clst

f1 31501 16193 287 35 227 34 168 28
f2 248 21 9148 21 314 25 269 36
f3 26453 10597 335 48 280 42 206 38
f4 117552 14231 6536 114 1849 39 1071 22
f5 49432 20783 1832 130 919 81 698 64
f6 47738 40580 10980 3096 5495 1057 4121 1309
f7 257 37 — — 3278 827 626 166
f8 13125 7089 4431 91 3009 93 1553 31
f9 10190 4770 2214 98 979 76 797 58
f10 26419 19732 1724 31 1180 35 632 12
avg 32292 50400 4165 407 1753 231 1004 176

(without f7)

Table: Comparative Tests between Different Inclusion Functions
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Interval Branch and Bound Algorithm:
Accelerating Subroutines

Notations: X ⊆ Rn, we consider f over X , G (X ) is an
enclosure of the gradient of f over X and H(X ) is an
enclosure of the Hessian matrix of f over X .

I Monotonicity Test
if Gi (X )L > 0 then

Xi := [xL, xL]
if Gi (X )U < 0 then

Xi := [xU , xU ]
Reduction of the research on a face of X for all i .

I Convexity Test
if Hii (X )U < 0 for a i then

the hessian matrix cannot be semi-definite
positive over X

there is no stationary point in X
X can be deleted.
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Interval Branch and Bound Algorithm:
Accelerating Subroutines

Notations: X ⊆ Rn, we consider f over X , G (X ) is an
enclosure of the gradient of f over X and H(X ) is an
enclosure of the Hessian matrix of f over X .

I Monotonicity Test
if Gi (X )L > 0 then

Xi := [xL, xL]
if Gi (X )U < 0 then

Xi := [xU , xU ]
Reduction of the research on a face of X for all i .

I Convexity Test
if Hii (X )U < 0 for a i then

the hessian matrix cannot be semi-definite
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Interval Branch and Bound Algorithm: Interval
Newton Step

Notations: X ⊆ Rn, we consider f over X , G (X ) is an
enclosure of the gradient of f over X and H(X ) is an
enclosure of the Hessian matrix of f over X .
One Interval Newton Step:

1. Choose x ∈ X ,

2. Solve H(X )(x − Y ) = ∇f (x), denote Z the resulting
enclosure of the solution Y

3. X ′ := X ∩ Z .

Property

I If ξ is a zero of ∇f then ξ ∈ X ′.

I If X ′ = ∅ then ∇f does not have a zero in X .

I If Z ⊆ X then a zero exists in X .
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Interval Branch and Bound Algorithm: Interval
Newton Step

Notations: X ⊆ Rn, we consider f over X , G (X ) is an
enclosure of the gradient of f over X and H(X ) is an
enclosure of the Hessian matrix of f over X .
One Interval Newton Step:

1. Choose x ∈ X ,

2. Solve H(X )(x − Y ) = ∇f (x), denote Z the resulting
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Pruning Techniques based on T1, Baumann and
LBVF: Univariate Case

Idea: What can we do with a solution f̃?
The solution in X is over the line y = f̃.
=⇒ Discard some parts of the box.
Example:
Consider f (x) = x2 − x , x ∈ X = [0, 2] and f̃ = −1

4 (the
global minimum value)
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Pruning Techniques based on T1, Baumann and
LBVF: Univariate Case

Idea: What can we do with a solution f̃?
The solution in X is over the line y = f̃.
=⇒ Discard some parts of the box.
Example:
Consider f (x) = x2 − x , x ∈ X = [0, 2] and f̃ = −1

4 (the
global minimum value)
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Example of Pruning Techniques based on T1

f (x) = x2 − x , x ∈ X = [0, 2],T L
1 (X ) = −3
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Example of Pruning Techniques based on T1

f (x) = x2 − x , x ∈ X = [0, 2],T L
1 (X ) = −3
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Example of Pruning Techniques based on TB

f (x) = x2 − x , x ∈ X = [0, 2],TB(X ) = −1.75
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Example of Pruning Techniques based on LBVF

f (x) = x2 − x , x ∈ X = [0, 2], LBVF (X ) = −1
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Example of Pruning Techniques based on LBVF

f (x) = x2 − x , x ∈ X = [0, 2], LBVF (X ) = −1
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Outline

Interval Analysis and Extensions

Interval Methods for Computing Bounds
Baumann, LBVF and Trans. Methods: Univariate Case
T1, Baumann, AS Form: Multivariate Case
Affine and Quadratic Forms

Interval Branch and Bound Algorithms: Unconstrained Case
Principle of IBBA Algorithm
Numerical Examples
Accelerating Techniques

Algorithms for Mixed and Constrained Problems
Principle of IBBA Algorithm with Constraints
Propagation Techniques
Algorithms for Mixed Problems

Application of the Design of Electrical Machines
Direct and Inverse Problem of Design and Formulations
A Simple Numerical Examples

Some Realizations and Conclusion
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Principle of a Branch and Bound Algorithm for a
problem with constraints

Notation: 
min
x∈Rn

f (x)

gi (x) ≤ 0 ∀i ∈ {1, . . . , ng}
hj(x) = 0 ∀j ∈ {1, . . . , nh}

I Choice and Subdivision of the box X , (in 2 parts by step): list
of possible solutions,

I Reduction of the sub-boxes, by using a constraint propagation
technique,

I Computation of bounds of the functions F , Gj , Hj on the
sub-boxes, - inclusion functions -

I Elimination of the sub-boxes which cannot contain the global
optimum: F L(X ) > f̃ or GL

i (X ) > 0 or 0 6∈ H(X ), where f̃
denotes the current solution,

I STOP when accurate enclosures of the optimum are obtained.
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Propagation Techniques

c(x) ∈ [a, b] is a contraint =⇒ implicit (or explicit) relations
between the variables of the problem.

Idea: use some deduction steps for reducing the box X .

Linear case: if c(x) =
n∑

i=1

aixi then:

Xk :=


[a, b]−

n∑
i=1,i 6=k

aiXi

ak

 ∩ Xk , si ak 6= 0. (1)

where k is in {1, · · · , n} and Xi is the ith component of X .

Non-linear case: Idea (E. Hansen): one linearizes using T1 (or
T2). Then one solve a linear system with interval coefficients.
Other Idea: construction of the calculus tree and propagation.
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Example of Propagation Technique based on the
Calculus Tree

Let c(x) = 2x3x2 + x1 and

c(x) = 3

where xi ∈ [1, 3] for all i ∈ {1, 2, 3}.
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Example of Propagation Technique based on the
Calculus Tree

Let c(x) = 2x3x2 + x1 and

c(x) = 3

where xi ∈ [1, 3] for all i ∈ {1, 2, 3}.
The propagation is:

X

X

X
3

*

+

*

2

1

2
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Calculus Tree
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Algorithms for Mixed Problems

Continuous variables: real variables (dimensions of an
electrical machines such as the diameter).

Discrete variables: integer (number of pair of poles of a
machine), boolean (machine with or without slot), categorical
variable (which kind of magnet is used).

For integer and boolean variables =⇒ relaxation for
computing bounds + particular bisection technique and
propagation.

For categorical variables =⇒ we introduce 4 particular
algorithms with propagation and retro-propagation +
properties about the bisection techniques.
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Outline

Interval Analysis and Extensions

Interval Methods for Computing Bounds
Baumann, LBVF and Trans. Methods: Univariate Case
T1, Baumann, AS Form: Multivariate Case
Affine and Quadratic Forms

Interval Branch and Bound Algorithms: Unconstrained Case
Principle of IBBA Algorithm
Numerical Examples
Accelerating Techniques

Algorithms for Mixed and Constrained Problems
Principle of IBBA Algorithm with Constraints
Propagation Techniques
Algorithms for Mixed Problems

Application of the Design of Electrical Machines
Direct and Inverse Problem of Design and Formulations
A Simple Numerical Examples

Some Realizations and Conclusion
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Direct and Inverse Problem of Design
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Mathematical Formulation

I Dimensioning Inverse Problem:
min
x∈Rn

f (x)

gi (x) ≤ 0 ∀i ∈ {1, . . . , ng}
hj(x) = 0 ∀j ∈ {1, . . . , nh}

I More General Inverse Problem of Design:
min

x∈Rnr ,z∈Nne ,

σ∈
Qnc

i=1
Ki ,b∈Bnb

f (x , z , σ, b)

gi (x , z , σ, b) ≤ 0 ∀i ∈ {1, . . . , ng}
hj(x , z , σ, b) = 0 ∀j ∈ {1, . . . , nh}
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Rotating Machines with Magnetic Effects
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Example for the Dimensioning of an Electrical
Motor

Electrical Slotless Rotating Machines with Permanent Magnet:

2

E

p
βπ

la
eC

C

D

I IBBA standard (defined by Ratschek and Rokne 1988)
−→ 1h35,

I IBBA + propagation due to E. Hansen −→ 41.5s,

I IBBA + propagation with the calculus tree −→ 0.5s.
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Combination of Different Rotating Electrical
Machines

b

b b
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o
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o
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C D__
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D__
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g
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  r
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Internal RotorInverse Rotor

Rectangular or Sinusoidal Waveform

W
i
t
h
o
u
t

Figure: 4 structures possible machines ×2 modes (rectangular or
sinusoidal waveform).
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Discrete Variables for Modeling Electrical
Machines

1. br = 1 for machines with an internal rotoric configuration
and br = 0 for an external one,

2. be = 1 for machines with slots or be = 0 slotless
machines,

3. bf = 1 represents rectangular waveform or bf = 0 for a
sinusöıdale one.

3 boolean variables to represent 8 possible structures + 2
categorical variables.
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Combinatorial Models for Electrical Machines

Γem = kΓD [D + (1− be)(2br − 1)E ] LBeKS,

KS = krEj

(
be

a

a + d
+ (1− be)

)
,

kΓ =
π

2

[
bf [1−Kf ]

√
β + (1− bf )

√
2

2
sin(β

π

2
)

]
,

Kf = 1.5pβ

[
E + g

D

]
(1− be).bf ,

Be =
2J(σm)la

(2br − 1)D ln
[

D+2E(2br−1)(1−be)
D−2(2br−1)[la+g ]

] 1

kc
,

kc =
1

1− be

[
Nea2

5πD.g+πD.a

] ,

. . .

Generally, the torque Γem is fixed =⇒ a strong equality
constraint.
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Examples of 4 optimal machines with magnetical
effects
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Numerical Validations

Figure: Draw 2 optimal solutions (min mass and min multicriteria).

Figure: Mesh 2 above machines
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Extension: Numerical Validations

−pi −3*pi/4 −pi/2 −pi/4 0 pi/4 pi/2 3*pi/4 pi
−10

−8

−6

−4

−2

0

2

4

6

8

10

Angle de calage : −π ≤ Ψ ≤ π
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.m

)
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Min Vol
Min Multi

Figure: Torque of 3 solutions and design of teeth of the slot.

Using Triangle and EFCAD.
Name of the Software: NUMT.
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Some Realizations

Figure: Motor with a strongest torque.

Figure: Design of piezoelectric bimorphs.
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